

# Библиотека paOwenIO



Руководство пользователя

06.2024 версия dev2.1

## Содержание

| Испо | ользуе | мые термины и сокращения                                           | . 4 |
|------|--------|--------------------------------------------------------------------|-----|
| Введ | цение. |                                                                    | . 5 |
| 1    | Библи  | ютека paOwenIO                                                     | . 6 |
| 1.1  | Раз,   | дел Общие ПЛК2XX                                                   | . 7 |
| 1    | .1.1   | Аппаратная информация (OwenHWInfo)                                 | . 7 |
| 1    | .1.2   | Интерактивное окружение (OwenEnv)                                  | . 8 |
| 1    | .1.3   | Напряжение батареи ЧРВ (OwenBattery)                               | . 9 |
| 1    | .1.4   | Автоматическое управление индикацией батареи ЧРВ (AutoBatteryLEDs) | 10  |
| 1    | .1.5   | Часы реального времени (OwenRTC)                                   | 11  |
| 1    | .1.6   | Порт RS-232 (210-RS232)                                            | 12  |
| 1    | .1.7   | Порт RS-485 (210-RS485)                                            | 13  |
| 1    | .1.8   | Наличие питания (210-Power)                                        | 13  |
| 1    | .1.9   | Системные светодиоды (210-LED)                                     | 14  |
| 1    | .1.10  | Внешние накопители (210-SD-USB)                                    | 15  |
| 1.2  | Раз,   | дел ПЛК210-11                                                      | 16  |
| 1    | .2.1   | Дискретные выходы DO 14 (210-11-DO)                                | 17  |
| 1    | .2.2   | ШИМ дискретных выходов DO 14 (210-11-DO-PWM)                       | 18  |
| 1    | .2.3   | Быстрые дискретные входы FDI 18 (210-11-FDI)                       | 19  |
| 1    | .2.4   | Измерение частоты FDI 18 (210-11-FDI-Frequency)                    | 20  |
| 1    | .2.5   | Дискретные входы DI 912 (210-11-DI)                                | 21  |
| 1    | .2.6   | Дискретные выходы DO 518 (210-11-DO)                               | 22  |
| 1.3  | Раз,   | дел ПЛК210-12                                                      | 23  |
| 1    | .3.1   | Дискретные выходы DO 14 (210-12-DO)                                | 24  |
| 1    | .3.2   | ШИМ дискретных выходов DO 14 (210-12-DO-PWM)                       | 25  |
| 1    | .3.3   | Быстрые дискретные входы FDI 18 (210-12-FDI)                       | 26  |
| 1    | .3.4   | Измерение частоты FDI 18 (210-12-FDI-Frequency)                    | 27  |
| 1    | .3.5   | Дискретные входы DI 912 (210-12-DI)                                | 28  |
| 1    | .3.6   | Дискретные выходы DO 512 (210-12-DO)                               | 29  |
| 1    | .3.7   | Дискретные входы DI 1324 (210-12-DI)                               | 30  |
| 1.4  | Раз,   | дел ПЛК210-14                                                      | 31  |
| 1    | .4.1   | Дискретные выходы DO 14 (210-14-DO)                                | 32  |
| 1    | .4.2   | ШИМ дискретных выходов DO 14 (210-14-DO-PWM)                       | 33  |

| 1.4                                                        | .3                                                | Быстрые дискретные входы FDI 18 (210-14-FDI)    | 34 |
|------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------|----|
| 1.4                                                        | .4                                                | Измерение частоты FDI 18 (210-14-FDI-Frequency) | 35 |
| 1.4                                                        | .5                                                | Дискретные входы DI 912 (210-14-DI)             | 37 |
| 1.4                                                        | .6                                                | Дискретные выходы DO 512 (210-14-DO)            | 37 |
| 1.4                                                        | .7                                                | Аналоговые входы AI 14 (210-14-AI)              | 38 |
| 2 Г                                                        | Іриме                                             | еры работы с блоками библиотеки paOwenIO        | 42 |
| 2.1                                                        | Пол                                               | учение аппаратной информации (OwenHWInfo)       | 42 |
| 2.2 Установка и получение системного времени ПЛК (OwenRTC) |                                                   | 43                                              |    |
| 2.3                                                        | 2.3 Управление светодиодом Питание (210-Power) 44 |                                                 | 44 |
| 2.4                                                        | Упр                                               | авление светодиодом Работа (210-LED)            | 45 |
| 2.5                                                        | Раб                                               | ота с внешними накопителями (210-SD-USB)        | 46 |

## Используемые термины и сокращения

- ПЛК программируемый логический контроллер.
- ЧРВ часы реального времени.
- ШИМ широтно-импульсная модуляция.

#### Введение

Настоящее руководство описывает функциональные блоки библиотеки *paOwenIO* для работы с контроллерами OBEH, программируемыми в среде Полигон.

Общая информация о схемах подключения питания и входов/выходов контроллера, технических характеристиках и т.д. описана в <u>Руководстве по эксплуатации</u> на прибор.

Подразумевается, что читатель обладает базовыми навыками работы с Полигон, поэтому общие вопросы (например, создание и загрузка проектов) в данном документе не рассматриваются – они подробно описаны в документах <u>Руководство по программированию.</u> <u>Библиотека раСоге</u> и <u>Быстрый старт</u>.

Документ соответствует версии среды Полигон 2 – **1929**, версии библиотеки *раОwenIO* – **120** и выше.

## 1 Библиотека paOwenIO

*paOwenIO* — библиотека, предназначенная для получения данных с входов контроллера, управления выходами, получения системной информации о контроллере и др.

В структуру библиотеки входят следующие разделы:

- Общие ПЛК2ХХ в данном разделе приведены блоки для получения аппаратной информации, работы с устройствами контроллера и т.д., общие для всех модификаций контроллеров;
- ПЛК210-11 в данном разделе приведены блоки для работы с входами/выходами контроллеров с модификацией ПЛК210-11-PL-X;
- ПЛК210-12 в данном разделе приведены блоки для работы с входами/выходами контроллеров с модификацией ПЛК210-12-PL-X;
- ПЛК210-14 в данном разделе приведены блоки для работы с входами/выходами контроллеров с модификацией ПЛК210-14-PL-X.

Для добавления библиотеки *раОwenIO* в проект следует:

1. Перейти в меню **Окна/Проекты**. В появившемся окне отобразится текущий проект и добавленные библиотеки.

| Проекты                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Проекты         Проекты         Проекты         Библиотеки         РаСоге (E:\paLibs\paCore\paCore.II2)         х         раОрсUA (E:\paLibs\paOpcUA.II2)                                                                     |
| Открыть Создать Закрыть Сохранить как                                                                                                                                                                                         |
| Сообщение об ошибке Отправить                                                                                                                                                                                                 |
| История изменений                                                                                                                                                                                                             |
| 2024-05-16 16:54:01.008 406 m.maslennikova@M-MASLENNIKOVA [OK] Coxp. ▲<br>2024-05-16 16:53:47.992 405 m.maslennikova@M-MASLENNIKOVA [OK] Tpaн<br>example_palEC850_PLC210_client {9c2ed12b-d62d-4dbb-b506-bf0ae304ca70} ▼<br>【 |
| Показывать 10 записей Обновить                                                                                                                                                                                                |
| Поиск 🛛 🗵 Добавить новую запись Редактировать Удалить                                                                                                                                                                         |
| Список доступных библиотек:                                                                                                                                                                                                   |
| Добавить Удалить                                                                                                                                                                                                              |

Рисунок 1.1 – Добавление библиотеки paOwenIO в проект

2. Нажать кнопку **Открыть** и перейти в папку с файлами библиотеки, которую необходимо добавить. Затем в выпадающем списке выбрать тип файла **Библиотека Полигон 2 (\*.II2)**.



Рисунок 1.2 – Добавление библиотеки paOwenIO в проект

3. В окне появится файл библиотеки с расширением **.II2**. Следует выбрать его и нажать открыть.

| ← → ► ↑ 📙 « Лока                 | льный диск (E:) > paLibs > paOwenIO > | ・ ひ Поиск в: paOwenIO                                  | م              |
|----------------------------------|---------------------------------------|--------------------------------------------------------|----------------|
| Упорядочить 👻 Новая г            | тапка                                 | 8 ·                                                    | - 🔳 🕐          |
| 🖊 Загрузки                       | ^ Имя                                 | Дата изменения                                         | Тип            |
| 🔄 Изображения                    | 📮 .paOwenIO                           | 27.04.2024 11:20                                       | Папка с файлам |
| 🎝 Музыка                         | 📙 build                               | 15.04.2024 10:28                                       | Папка с файлам |
| 🧊 Объемные объекты               | 📙 include                             | 15.04.2024 10:28                                       | Папка с файлам |
| 💻 Рабочий стол                   | paOwenIO.II2                          | 08.04.2024 9:28                                        | Файл "LL2"     |
| ь Локальный диск (С:)            |                                       |                                                        |                |
| 🐟 DRIVERS (D:)                   | -                                     |                                                        |                |
| <sub>ञ</sub> Локальный диск (Е:) | ~ <                                   |                                                        |                |
| Имя файл                         | a: paOwenIO.II2                       | <ul> <li>Библиотека Полиго</li> <li>Открыть</li> </ul> | он 2(*.II2)    |

Рисунок 1.3 – Добавление библиотеки paOwenIO в проект

Добавленная библиотека отобразится в окне Проекты.

## 1.1 Раздел Общие ПЛК2ХХ

В разделе *Общие ПЛК2ХХ* библиотеки *раОwenIO* размещены блоки для работы с ПЛК210, общие для всех модификаций.

## 1.1.1 Аппаратная информация (OwenHWInfo)

Блок *OwenHWInfo* предназначен для получения аппаратной информации о контроллере. Раздел библиотеки: *Общие ПЛК2XX*.

Данный блок можно разместить только в **Фоне**.

#### Таблица 1.1 – Назначение выходов OwenHWInfo

| Выходы |                                                                               |  |
|--------|-------------------------------------------------------------------------------|--|
|        | Статус:                                                                       |  |
|        | 0 – работы не выполнялось (инициализация);                                    |  |
| sts    | <b>1</b> – корректная работа;                                                 |  |
|        | -2 – ошибка измерения температуры;                                            |  |
|        | -3 — ошибка определения модификации контроллера                               |  |
|        | Достоверность:                                                                |  |
| vld    | <b>0</b> – ошибка;                                                            |  |
|        | <b>1</b> – корректная работа                                                  |  |
| s/n    | Заводской номер ПЛК (соответствует гравировке на корпусе прибора)             |  |
| MAC    | МАС-адрес ПЛК (соответствует гравировке на корпусе прибора)                   |  |
| temp   | Температура, °С                                                               |  |
| line   | Линейка ПЛК: <b>210</b>                                                       |  |
| mod    | Модификация ПЛК: 11, 12 и т.д.                                                |  |
|        | Завершение работы. Обращается в 1, если контроллер перешел в режим питания от |  |
| trm    | ионистора (из-за потери питания по основным портам). Сигнализирует о скором   |  |
|        | завершении работы (через 1 секунду). Все остальное время равен <b>0</b>       |  |



#### ПРИМЕЧАНИЕ

Измерения температуры **temp** проводятся не чаще раза в **600 мс**, поэтому блок имеет непостоянное время выполнения.





Пример работы с блоком см. в разделе 2.1.

## 1.1.2 Интерактивное окружение (OwenEnv)

Блок **OwenEnv** предназначен для управления встроенным источником звукового сигнала и получения состояний тумблера СТАРТ/СТОП и сервисной кнопки. Раздел библиотеки: **Общие ПЛК2XX**.

Данный блок можно разместить только в Фоне.

Таблица 1.2 – Назначение входов и выходов OwenEnv

| Входы – параметры звукового излучателя |                                                           |  |
|----------------------------------------|-----------------------------------------------------------|--|
|                                        | Работа пищалки:                                           |  |
| enb                                    | 0 — выключить пищалку;                                    |  |
|                                        | <b>1</b> — включить пищалку                               |  |
| prd                                    | Период в микросекундах – задает частоту звукового сигнала |  |

| duty   | Рабочий цикл в микросекундах – задает громкость             |  |
|--------|-------------------------------------------------------------|--|
| Выходы |                                                             |  |
|        | Статус:                                                     |  |
|        | 0 – работы не выполнялось (инициализация);                  |  |
|        | <b>1</b> – корректная работа;                               |  |
|        | <b>-1</b> – ошибка связи с устройствами;                    |  |
| ctc    | -2 – ошибка чтения состояния;                               |  |
| 515    | - <b>3</b> — ошибка установки параметров звукового сигнала; |  |
|        | <b>-4</b> – ошибка связи с тумблером;                       |  |
|        | -5 – ошибка связи с сервисной кнопкой;                      |  |
|        | -6 – ошибка связи с источником звукового сигнала;           |  |
|        | -7 – на входе блока некорректные параметры                  |  |
|        | Достоверность:                                              |  |
| vld    | <b>0</b> – ошибка;                                          |  |
|        | 1 – корректная работа                                       |  |
|        | Статус тумблера СТАРТ/СТОП:                                 |  |
| tmb    | 0-стоп;                                                     |  |
|        | 1-CTAPT                                                     |  |
|        | Положение сервисной кнопки:                                 |  |
| srvs   | 0 – не нажата;                                              |  |
|        | 1 – нажата                                                  |  |



Рисунок 1.5 – Интерактивное окружение (OwenEnv)

## i

#### внимание

Минимальное значение периода **prd 100 мкс** (10 кГц). Рабочий цикл **duty** должен не превышать периода **prd**. При вводе некорректного значения оно не сохраняется и выводится ошибка.



#### ПРИМЕЧАНИЕ

Даже если рабочий цикл duty задан так, что составляет 0 или 100 % prd, это не приводит к отключению звука. Для отключения звука следует использовать вход enb.

## 1.1.3 Напряжение батареи ЧРВ (OwenBattery)

Блок *OwenBattery* предназначен для измерения напряжения батареи часов реального времени. Измерение может производиться с заданным периодом **prd** (в днях) или принудительно по изменению **frnt** с **0** на **1**. Раздел библиотеки: *Общие ПЛК2ХХ*.

При проведении измерений значительно увеличивается время выполнения блока, поэтому его можно разместить только в **Фоне**.

#### Таблица 1.3 – Назначение входов и выходов OwenBattery

| Входы |                                                                                       |
|-------|---------------------------------------------------------------------------------------|
| prd   | Период измерения в днях. При установке <b>0</b> периодические измерения не проводятся |
|       | Команда измерить (по переднему фронту) – результат измерения будет получен через      |
| frnt  | два цикла после подачи команды. Измерение по команде не сбрасывает таймер             |
|       | периодического измерения                                                              |
|       | Выходы                                                                                |
|       | Статус:                                                                               |
|       | 0 – данные еще не считывались;                                                        |
| sts   | 1 – значение получено успешно;                                                        |
|       | -1 — ошибка получения значения;                                                       |
|       | -2 – ошибка чтения результатов измерения                                              |
|       | Достоверность:                                                                        |
| vld   | <b>0</b> – ошибка;                                                                    |
|       | <b>1</b> – корректная работа                                                          |
| vltg  | Напряжение батареи ЧРВ в мВ                                                           |



#### внимание

При измерении напряжения от батареи идет ток, не следует проводить его слишком часто (более **5 раз** в день).



Рисунок 1.6 –

Напряжение батареи ЧРВ (OwenBattery)

## 1.1.4 Автоматическое управление индикацией батареи ЧРВ

## (AutoBatteryLEDs)

Блок *AutoBatteryLEDs* предназначен для автоматического выставления режимов работы светодиода Батарея в соответствии с напряжением батареи часов реального времени. Раздел библиотеки: *Общие ПЛК210*.

Данный блок можно разместить только в **Фоне**.

Блок проводит измерения раз в сутки и сохраняет результат в файлы **RTC\_Battery\_Voltage** с расширениями **.da1** и **.da2** (бинарные) в рабочую директорию ПЛК.

| Таблица 1.4 – | Назначение выходов | <b>AutoBatteryLEDs</b> |
|---------------|--------------------|------------------------|
|---------------|--------------------|------------------------|

| Выходы  |                                                            |  |
|---------|------------------------------------------------------------|--|
| voltage | Результат последнего измерения напряжения батареи ЧРВ в мВ |  |
|         | Достоверность:                                             |  |
| vld     | <b>0</b> – ошибка;                                         |  |
|         | <b>1</b> – корректная работа                               |  |

#### Таблица 1.5 – Индикация батареи ЧРВ

| Напряжение, мВ | Индикация                                              |
|----------------|--------------------------------------------------------|
| > 1200         | Индикатор зеленый                                      |
| 10001200       | Индикатор загорается красным на 250 мс с паузой 500 мс |
| < 1000         | Индикатор красный                                      |
|                | · · · ·                                                |



#### Рисунок 1.7 – Автоматическое управление индикацией батареи ЧРВ (AutoBatteryLEDs)

# i

## ПРИМЕЧАНИЕ

До проведения первого успешного измерения индикация производится как для полностью заряженной батареи.

## 1.1.5 Часы реального времени (OwenRTC)

Блок *OwenRTC* предназначен для установки системного времени контроллера. Раздел библиотеки: *Общие ПЛК2XX*.

Данный блок можно разместить только в Фоне.

#### Таблица 1.6 – Назначение входов и выходов OwenRTC

| Входы |                                                                                    |  |  |
|-------|------------------------------------------------------------------------------------|--|--|
| utc   | Часовой пояс                                                                       |  |  |
| cot-  | Установить часовой пояс (по переднему фронту) – устанавливает часовой пояс,        |  |  |
| seiz  | указанный на входе <b>utc</b>                                                      |  |  |
| year  | Год                                                                                |  |  |
| mth   | Месяц                                                                              |  |  |
| day   | День                                                                               |  |  |
| hr    | Час                                                                                |  |  |
| min   | Минута                                                                             |  |  |
| sec   | Секунда                                                                            |  |  |
| cott  | Установить время (по переднему фронту) – устанавливает время и дату в соответствии |  |  |
| sell  | с входами <b>year, mth, day, hr, min, sec</b>                                      |  |  |
|       | Выходы                                                                             |  |  |
|       | Статус:                                                                            |  |  |
|       | 0 – ошибок не происходило или не было попыток установки времени;                   |  |  |
|       | <b>-1</b> – не удалось связаться с ЧРВ;                                            |  |  |
| cto   | - <b>2</b> – не удалось установить время в ЧРВ;                                    |  |  |
| 515   | -4 – часовой пояс находится вне допустимого диапазона (-1214);                     |  |  |
|       | <b>-8</b> – не удалось установить часовой пояс;                                    |  |  |
|       | -16 — не удалось установить системное время                                        |  |  |
|       | При одновременном возникновении ошибок в <b>sts</b> будет отображаться их сумма.   |  |  |
|       | Достоверность:                                                                     |  |  |
| vld   | <b>0</b> – ошибка;                                                                 |  |  |
|       | 1 – корректная работа                                                              |  |  |

| b166 |   |      |      |     | 40  |
|------|---|------|------|-----|-----|
|      |   | Owe  | nRTC |     |     |
| 3    | - | utc  | i16  | i32 | sts |
| 0    | - | setz | b    | b   | vld |
| 2023 | - | year | u16  |     |     |
| 1    | - | mth  | u16  |     |     |
| 1    | - | day  | u16  |     |     |
| 0    | - | hr   | u16  |     |     |
| 0    | - | min  | u16  |     |     |
| 0    | - | sec  | u16  |     |     |
| 0    | - | sett | b    |     |     |



Пример работы с блоком см. в разделе 2.2.

## 1.1.6 Порт RS-232 (210-RS232)

Блок **210-RS232** предназначен для работы с портом контроллера стандарта **RS-232**. Раздел библиотеки: **Общие ПЛК2XX**.

|      | Входы                                                                        |
|------|------------------------------------------------------------------------------|
| spd  | Скорость в бодах: <b>1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200</b> |
|      | Контроль четности:                                                           |
| par  | 0-нет;                                                                       |
|      | <b>1</b> – нечетный;                                                         |
|      | <b>3</b> – четный                                                            |
| stb  | Количество стоповых бит: 1 или 2                                             |
| dtb  | Количество бит данных: <b>7</b> или <b>8</b>                                 |
|      | Выходы                                                                       |
| cnc  | Связь с блоком протокола                                                     |
| stat | Статус:                                                                      |
|      | <b>1</b> – корректная работа;                                                |
|      | <b>-1</b> – не удалось открыть указанный интерфейс;                          |
|      | -2 – отсутствует соединение                                                  |
| rcnt | Количество полученных байт                                                   |
| wcnt | Количество отправленных байт                                                 |
|      | Диагностический – счетчик разности между количеством ошибок и принятыми (не  |
| ulag | может быть меньше <b>0</b> )                                                 |

| Таблица 1.7 – 🗆 | Назначение входов и выходов | 210-RS232 |
|-----------------|-----------------------------|-----------|
|-----------------|-----------------------------|-----------|



Рисунок 1.9 -

Порт RS-232 (210-RS232)

## 1.1.7 Порт RS-485 (210-RS485)

Блок **210-RS485** предназначен для работы с портом контроллера стандарта **RS-485**. Раздел библиотеки: **Общие ПЛК2XX**.

|  | Таблица 1.8 – | Назначение входов | и выходов 210-RS48 |
|--|---------------|-------------------|--------------------|
|--|---------------|-------------------|--------------------|

|        | Входы                                                                        |  |  |  |  |
|--------|------------------------------------------------------------------------------|--|--|--|--|
| port   | Порт: А1В1 или А2В2                                                          |  |  |  |  |
| spd    | Скорость в бодах: <b>1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200</b> |  |  |  |  |
|        | Контроль четности:                                                           |  |  |  |  |
|        | 0-нет;                                                                       |  |  |  |  |
| par    | 1 – нечетный;                                                                |  |  |  |  |
|        | 3-четный                                                                     |  |  |  |  |
| stb    | Количество стоповых бит: <b>1</b> или <b>2</b>                               |  |  |  |  |
| dtb    | Количество бит данных: 7 или 8                                               |  |  |  |  |
| term   | Терминальные резисторы:                                                      |  |  |  |  |
|        | OLD_TERM – оставить без изменений;                                           |  |  |  |  |
|        | ON_TERM – включить;                                                          |  |  |  |  |
|        | OFF_TERM – выключить                                                         |  |  |  |  |
| Выходы |                                                                              |  |  |  |  |
| cnc    | Связь с блоком протокола                                                     |  |  |  |  |
|        | Статус:                                                                      |  |  |  |  |
| stat   | <b>1</b> – корректная работа;                                                |  |  |  |  |
|        | -1 — не удалось открыть указанный интерфейс;                                 |  |  |  |  |
|        | -2 – отсутствует соединение;                                                 |  |  |  |  |
|        | -6 – ошибка настройки интерфейса                                             |  |  |  |  |
| rcnt   | Количество полученных байт                                                   |  |  |  |  |
| wcnt   | Количество отправленных байт                                                 |  |  |  |  |
| diag   | Диагностический – счетчик разности между количеством ошибок и принятыми (не  |  |  |  |  |
|        | может быть меньше <b>0</b> )                                                 |  |  |  |  |



Рисунок 1.10 – По

Порт RS-485 (210-RS485)

Примеры работы с блоком приведены в документации <u>Обмен по протоколу Modbus.</u> Библиотека paModbus.

## 1.1.8 Наличие питания (210-Power)

Блок **210-Power** предназначен для получения информации о наличии питания на портах и управления светодиодом **Питание** <sup>(1)</sup>. Раздел библиотеки: **Общие ПЛК2ХХ**.

Данный блок можно разместить только в **Фоне**.

#### Таблица 1.9 – Назначение входов и выходов 210-Power

|      | Входы                                                                    |
|------|--------------------------------------------------------------------------|
|      | Режим работы:                                                            |
| mode | <b>0</b> – ручной;                                                       |
|      | 1 — авто                                                                 |
|      | Ручное управление индикатором <b>Питание</b> 🙂:                          |
| alrm | <b>0</b> – зеленый;                                                      |
|      | <b>1</b> — красный                                                       |
|      | Выходы                                                                   |
| sts  | Статус:                                                                  |
|      | <b>0</b> – работы не выполнялось (инициализация);                        |
|      | <b>1</b> – корректная работа;                                            |
|      | -1 – ошибка соединения с устройствами (портами питания или светодиодом); |
|      | -2 – ошибка чтения состояния питания;                                    |
|      | -3 – ошибка установки режима работы светодиода                           |
| vld  | Достоверность:                                                           |
|      | <b>0</b> – ошибка;                                                       |
|      | <b>1</b> – корректная работа                                             |
| pwr1 | Наличие питания на Порту 1                                               |
| pwr2 | Наличие питания на Порту 2                                               |

В автоматическом режиме работы при отсутствии питания на **Порту 1** светодиод загорается красным. Наличие питания на резервном порту не оказывает влияния на индикацию.





Пример работы с блоком см. в разделе 2.3.

## 1.1.9 Системные светодиоды (210-LED)

Блок **210-LED** предназначен управления системными светодиодами контроллера. Раздел библиотеки: **Общие ПЛК2XX**.

Данный блок можно разместить только в Фоне.

#### Таблица 1.10 – Назначение входов и выходов 210-LED

|     | Входы                                                                        |
|-----|------------------------------------------------------------------------------|
| led | Светодиод, управление которым будет осуществляться:                          |
|     | ВАТ_GREEN – зеленый светодиод Батарея 🖾 ;                                    |
|     | ВАТ_RED – красный светодиод Батарея 🖾 ;                                      |
|     | WORK – зеленый светодиод Работа $\oplus$ ;                                   |
|     | UNDER_CAP — оранжевый индикатор состояния SD-карты (под центральной крышкой) |

|      | Режим работы:                                                                     |
|------|-----------------------------------------------------------------------------------|
|      | manual – ручное управление, состояние светодиода зависит от сигнала на входе enb; |
| mode | microSD – автоматическая индикация при проведении операций чтения/записи с        |
|      | MicroSD-картой;                                                                   |
|      | nr_proc – автоматическая индикация (частота зависит от нагруженности контроллера) |
|      | Значение вручную:                                                                 |
| enb  | <b>0</b> -выключен;                                                               |
|      | <b>1</b> — включен                                                                |
|      | Выходы                                                                            |
|      | Статус:                                                                           |
|      | 0 – работы не выполнялось (инициализация);                                        |
| sts  | <b>1</b> – корректная работа;                                                     |
|      | <b>-1</b> – ошибка соединения со светодиодом;                                     |
|      | - <b>3</b> – ошибка установки режима работы светодиода                            |
|      | Достоверность:                                                                    |
| vld  | <b>0</b> – ошибка;                                                                |
|      | <b>1</b> – корректная работа                                                      |





Пример работы с блоком см. в разделе 2.4.

## 1.1.10 Внешние накопители (210-SD-USB)

Блок **210-SD-USB** предназначен для работы с внешними носителями (MicroSD-карта и USBнакопитель), их монтирования (подключения/получения возможности работы с файлами) и размонтирования (отключения/извлечения без потери данных). Раздел библиотеки: **Общие ПЛК2ХХ**.

Данный блок можно разместить только в **Фоне**.

Логические входы реагируют при изменении значения с 0 на 1.

|         | Входы                                        |
|---------|----------------------------------------------|
| mntSD   | Монтировать карту MicroSD-карту              |
| umntSD  | Размонтировать карту MicroSD-карту           |
| mntUSB  | Монтировать USB-накопитель                   |
| umntUSB | Размонтировать USB-накопитель                |
| rfrsh   | Обновление информации о статусах накопителей |

|         | Выходы                                                    |
|---------|-----------------------------------------------------------|
|         | Статус MicroSD-карты:                                     |
| sdmntd  | 0 – карта отключена;                                      |
|         | 1 – карта подключена                                      |
| sdpath  | Путь к файлам MicroSD-карты:                              |
|         | Пустая строка – накопитель отключен;                      |
|         | /mmcblk0p1 – ссылка на директорию монтирования накопителя |
| usbmntd | Статус USB-накопителя:                                    |
|         | 0 – накопитель отключен;                                  |
|         | 1 – накопитель подключен                                  |
| usbpath | Путь к файлам USB-накопителя:                             |
|         | Пустая строка – накопитель отключен;                      |
|         | /sda1 – ссылка на директорию монтирования накопителя      |

|   |   | b191       |   |     | 65      |   |
|---|---|------------|---|-----|---------|---|
|   |   | 210-SD-USB |   |     |         |   |
| 0 | - | mntSD      | b | b   | sdmntd  | - |
| 0 | - | umntSD     | b | str | sdpath  | - |
| 0 | - | mntUSB     | b | b   | usbmntd | - |
| 0 | - | umntUSB    | b | str | usbpath | - |
| 0 | - | rfrsh      | b |     |         |   |



Пример работы с блоком см. в разделе 2.5.

## 1.2 Раздел ПЛК210-11

В данном разделе размещены блоки для работы с входами/выходами ПЛК210-11.

Таблица 1.12 – Соотнесение периферии ПЛК210-11 с блоками библиотеки paOwenIO

| Входы/выходы ПЛК | Расположение<br>на корпусе | Блок paOwenIO        | Назначение блока        |
|------------------|----------------------------|----------------------|-------------------------|
|                  |                            | <u>210-11-D0</u>     | Задание состояния       |
| DO 14            | Слева                      | 210-11-DO-PWM        | Режим ШИМ               |
|                  | Слева                      | <u>210-11-FDI</u>    | Отображение состояния   |
| FDI 18           |                            | 210-11-FDI-Frequency | Режим измерения частоты |
| DI 912           | Слева                      | <u>210-11-DI</u>     | Отображение состояния   |
| DO 518           | Справа                     | <u>210-11-D0</u>     | Задание состояния       |



Рисунок 1.14 – ПЛК210-11

## 1.2.1 Дискретные выходы DO 1...4 (210-11-DO)

Блок **210-11-DO** предназначен для работы с дискретными выходами **DO 1...4**. Физически они расположены на левой стороне контроллера. Раздел библиотеки: **ПЛК210-11**.

Блок **210-11-DO** задает режим работы выходов – переключение логического сигнала, для работы выходов в режиме ШИМ используется блок <u>210-11-DO-PWM</u>.

| Входы |                                                                             |  |
|-------|-----------------------------------------------------------------------------|--|
| pos   | Стартовый номер используемого <b>DO: 0 – DO 1, 1 – DO 2</b> и т.д.          |  |
| do    | Значения выходов <b>DO 14</b> (циклический)                                 |  |
|       | Выходы                                                                      |  |
| sts   | Статус:                                                                     |  |
|       | <b>0</b> – работы не выполнялось (инициализация);                           |  |
|       | <b>1</b> – блок работает без ошибок;                                        |  |
|       | 2 – сумма <b>роз</b> и количества входов блока превышает количество выходов |  |
|       | контроллера;                                                                |  |
|       | -14 — ошибка записи состояния выхода;                                       |  |
|       | <b>-32</b> – ошибка инициализации устройства;                               |  |
|       | -33 — ошибка связи с выходами                                               |  |
|       | Достоверность:                                                              |  |
| vld   | <b>0</b> – ошибка;                                                          |  |
|       | 1 – корректная работа                                                       |  |

Для каждого физического выхода контроллера в блоке имеется возможность создать вход **do**, при подаче сигнала на который, загорается индикатор и генерируется выходной сигнал.

Параметр **pos** позволяет задать стартовый номер используемого **DO**. Данный параметр полезен, если в проекте требуется создать несколько блоков **DO** (например, если какие-то из промежуточных выходов работают в других режимах).

Блок также имеет диагностические выходы: **sts** равный **1**, если блок работает корректно, и номеру ошибки в случае ошибки, а также логический **vld**, который изменяется между **1** и **0** по аналогичным правилам.



#### внимание

Если число входов блока (с учетом сдвига **pos**) превышает реальное количество выходов контроллера, то блок установит **sts** = **2**, **vld** = **0** и повлияет только на входы, попадающие в корректный диапазон.



#### внимание

Если в проект добавлены блоки таким образом, что для одного и того же выхода используется несколько режимов работы, то ни для одного из режимов не гарантируется нормальная работа.



Рисунок 1.15 – Дискретные выходы DO 1...4 (210-11-DO)

## 1.2.2 ШИМ дискретных выходов DO 1...4 (210-11-DO-PWM)

Блок **210-11-DO-PWM** предназначен для работы с дискретными выходами **DO 1...4** в режиме ШИМ. Физически они расположены на левой стороне контроллера. Раздел библиотеки: **ПЛК210-11**.

| Таблица 1.14 – Назначение | входов и выходов | 210-11-DO-PWM |
|---------------------------|------------------|---------------|
|---------------------------|------------------|---------------|

|      | Входы                                                                            |
|------|----------------------------------------------------------------------------------|
| pos  | Стартовый номер используемого <b>DO: 0 – DO 1, 1 – DO 2</b> и т.д.               |
| prd  | Период ШИМ выходов <b>DO 14</b> ПЛК в микросекундах (циклический)                |
| duty | Длительность импульса ШИМ выходов <b>DO 14</b> ПЛК в микросекундах (циклический) |
|      | Выходы                                                                           |
|      | Статус:                                                                          |
|      | <b>0</b> — работы не выполнялось (инициализация);                                |
|      | <b>1</b> — блок работает без ошибок;                                             |
|      | 2 – сумма pos и количества входов блока превышает количество выходов             |
| ctc  | контроллера;                                                                     |
| 515  | <b>3</b> — не удалось задать длительность импульса;                              |
|      | <b>4</b> — не удалось задать период работы;                                      |
|      | -32 – ошибка соединения с устройством для установки параметров ШИМ;              |
|      | - <b>33</b> — ошибка активации выхода;                                           |
|      | - <b>34</b> – ошибка при установке полярности                                    |

| vld | Достоверность:<br><b>0</b> – ошибка; |
|-----|--------------------------------------|
|     | 1 – корректная работа                |

Параметр **pos** позволяет задать стартовый номер используемого **DO**. Данный параметр полезен, если в проекте требуется создать несколько блоков **DO** (например, если какие-то из промежуточных выходов работают в других режимах).

Для каждого физического выхода контроллера в блоке имеется возможность создать входы **prd** — период ШИМ в микросекундах и **duty** — длительность импульса ШИМ в микросекундах.

Блок также имеет диагностические выходы: **sts** равный **1**, если блок работает корректно, и номеру ошибки в случае ошибки, а также логический **vld** который изменяется между **1** и **0** по аналогичным правилам.



#### ВНИМАНИЕ

Если число входов блока (с учетом сдвига **pos**) превышает реальное количество выходов контроллера, то блок установит **sts = 2**, **vld = 0** и повлияет только на входы, попадающие в корректный диапазон.



#### ВНИМАНИЕ

Если в проект добавлены блоки таким образом, что для одного и того же выхода используется несколько режимов работы, то ни для одного из режимов не гарантируется нормальная работа.





## 1.2.3 Быстрые дискретные входы FDI 1...8 (210-11-FDI)

Блок **210-11-FDI** предназначен для работы с быстрыми дискретными входами **FDI 1...8**. Физически они расположены на левой стороне контроллера. Раздел библиотеки: **ПЛК210-11**.

| Таблица 1 | .15 – Назначение вхо | одов и выходов | 210-11-FDI |
|-----------|----------------------|----------------|------------|
|-----------|----------------------|----------------|------------|

|        | Входы                                                                                                                                                                                                                                                                                                                                             |  |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| pos    | Стартовый номер используемого FDI: 0 – FDI 1, 1 – FDI 2 и т.д.                                                                                                                                                                                                                                                                                    |  |  |
| Выходы |                                                                                                                                                                                                                                                                                                                                                   |  |  |
| sts    | Статус:<br><b>0</b> – работы не выполнялось (инициализация);<br><b>1</b> – блок работает без ошибок;<br><b>2</b> – сумма <b>pos</b> и количества выходов блока превышает количество входов<br>контроллера;<br><b>3</b> – ошибка чтения состояния входа;<br>- <b>32</b> – ошибка связи со входами;<br><b>-33</b> – ошибка инициализации устройства |  |  |

| vld | Достоверность:<br><b>0</b> – ошибка;  |
|-----|---------------------------------------|
|     | 1 – корректная работа                 |
| di  | Входы <b>FDI 18</b> ПЛК (циклический) |

Для каждого физического входа контроллера в блоке имеется возможность создать выход

Параметр **pos** позволяет задать стартовый номер используемого **FDI**. Данный параметр полезен, если в проекте требуется создать несколько блоков **FDI** (например, если какие-то из промежуточных входов работают в других режимах).

Блок также имеет диагностические выходы: **sts** равный **1**, если блок работает корректно, и номеру ошибки в случае ошибки, а также логический **vld** который изменяется только между **1** и **0** по аналогичным правилам.



di.

#### ВНИМАНИЕ

Если число выходов блока (с учетом сдвига **pos**) превышает реальное количество входов контроллера, то блок установит **sts = 2**, **vld = 0** и повлияет только на выходы, попадающие в корректный диапазон.



Рисунок 1.17 – Быстрые дискретные входы (210-11-FDI)

## 1.2.4 Измерение частоты FDI 1...8 (210-11-FDI-Frequency)

Блок **210-11-FDI-Frequency** предназначен для работы с дискретными входами **FDI 1...8** в режиме измерения частоты. Физически они расположены на левой стороне контроллера. Раздел библиотеки: **ПЛК210-11**.

| Входы  |                                                                                    |  |
|--------|------------------------------------------------------------------------------------|--|
| pos    | Стартовый номер используемого FDI: 0 – FDI 1, 1 – FDI 2 и т.д.                     |  |
| Выходы |                                                                                    |  |
|        | Статус:                                                                            |  |
|        | <b>0</b> – работы не выполнялось (инициализация);                                  |  |
|        | <b>1</b> – блок работает без ошибок;                                               |  |
|        | <b>2</b> – сумма <b>роз</b> и количества выходов блока превышает количество входов |  |
| sts    | контроллера;                                                                       |  |
|        | <b>-18</b> – ошибка чтения состояния входа;                                        |  |
|        | - <b>32</b> — ошибка инициализации устройства;                                     |  |
|        | -33 — ошибка соединения с устройством для измерения;                               |  |
|        | -34 — ошибка переключения входов в режим измерения                                 |  |
|        | Достоверность:                                                                     |  |
| vld    | <b>0</b> – ошибка;                                                                 |  |
|        | 1 — корректная работа                                                              |  |

Параметр **pos** позволяет задать стартовый номер используемого **FDI**. Данный параметр полезен, если в проекте требуется создать несколько блоков **FDI** (например, если какие-то из промежуточных выходов работают в других режимах).

Для каждого физического входа контроллера в блоке имеется возможность создать выходы **prd** – период между импульсами в микросекундах, **duty** – длительность импульса в микросекундах, **frq** – частота импульсов в Гц.

Блок также имеет диагностические выходы: sts равный 1, если блок работает корректно, и номеру ошибки в случае ошибки, а также логический vld который изменяется между 1 и 0 по аналогичным правилам.



#### внимание

Если число выходов блока (с учетом сдвига **pos**) превышает реальное количество входов контроллера, то блок установит **sts = 2**, **vld = 0** и повлияет только на выходы, попадающие в корректный диапазон.



#### внимание

Если в проект добавлены блоки таким образом, что для одного и того же входа используется несколько режимов работы, то ни для одного из режимов не гарантируется нормальная работа.



Рисунок 1.18 – Измерение частоты FDI 1...8 (210-11-FDI-Frequency)

## 1.2.5 Дискретные входы DI 9...12 (210-11-DI)

Блок **210-11-DI** предназначен для работы с дискретными входами **DI 9...12**. Физически они расположены на левой стороне контроллера. Раздел библиотеки: **ПЛК210-11**.

| Таблица 1.17 – Назначение | входов и выходов 210-11-DI |
|---------------------------|----------------------------|
|---------------------------|----------------------------|

| Входы  |                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| pos    | Стартовый номер используемого <b>DI: 8 – DI 9, 9 – DI 10</b> и т.д.                                                                                                                                                                                                                                                                              |  |  |  |
| Выходы |                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| sts    | Статус:<br><b>0</b> – работы не выполнялось (инициализация);<br><b>1</b> – блок работает без ошибок;<br><b>2</b> – сумма <b>pos</b> и количества выходов блока превышает количество входов<br>контроллера;<br><b>3</b> – ошибка чтения состояния входа;<br><b>-32</b> – ошибка связи со входами;<br><b>-33</b> – ошибка инициализации устройства |  |  |  |
| vld    | Достоверность:<br>О – ошибка;<br>1 – корректная работа                                                                                                                                                                                                                                                                                           |  |  |  |
| di     | Входы <b>DI 912</b> ПЛК (циклический)                                                                                                                                                                                                                                                                                                            |  |  |  |

Для каждого физического входа контроллера в блоке имеется возможность создать выход

di.

Параметр **pos** позволяет задать стартовый номер используемого **DI**.

Блок также имеет диагностические выходы: **sts** равный **1**, если блок работает корректно, и номеру ошибки в случае ошибки, а также логический **vld** который изменяется только между **1** и **0** по аналогичным правилам.



#### внимание

Если число выходов блока (с учетом сдвига **pos**) превышает реальное количество входов контроллера, то блок установит **sts = 2**, **vld = 0** и повлияет только на выходы, попадающие в корректный диапазон.



Рисунок 1.19 – Дискретные входы DI 9...12 (210-11-DI)

## 1.2.6 Дискретные выходы DO 5...18 (210-11-DO)

Блок **210-11-DO** предназначен для работы с дискретными выходами **DO 5...18**. Физически они расположены на правой стороне контроллера. Раздел библиотеки: **ПЛК210-11**.

| Таблица 1.18 –Назначение | входов и выходов | 210-11-DO |
|--------------------------|------------------|-----------|
|--------------------------|------------------|-----------|

| Входы  |                                                                                    |  |  |  |  |
|--------|------------------------------------------------------------------------------------|--|--|--|--|
| pos    | Стартовый номер используемого <b>DO</b> : <b>0 – DO 5</b> , <b>1 – DO 6</b> и т.д. |  |  |  |  |
| do     | Выходы <b>DO 518</b> ПЛК (циклический)                                             |  |  |  |  |
| Выходы |                                                                                    |  |  |  |  |
| sts    | Статус:                                                                            |  |  |  |  |
|        | <b>0</b> – работы не выполнялось (инициализация);                                  |  |  |  |  |
|        | <b>1</b> – блок работает без ошибок;                                               |  |  |  |  |
|        | 2 – сумма <b>роз</b> и количества входов блока превышает количество выходов        |  |  |  |  |
|        | контроллера;                                                                       |  |  |  |  |
|        | -1 – ошибка связи с выходами, работа не выполняется;                               |  |  |  |  |
|        | -2 – ошибка записи состояния выходов;                                              |  |  |  |  |
|        | -32 — ошибка связи с выходами                                                      |  |  |  |  |
| vld    | Достоверность:                                                                     |  |  |  |  |
|        | <b>0</b> – ошибка;                                                                 |  |  |  |  |
|        | 1 – корректная работа                                                              |  |  |  |  |

Для каждого физического выхода контроллера в блоке имеется возможность создать вход **do**, при подаче сигнала на который, загорается индикатор и генерируется выходной сигнал.

Параметр **роз** позволяет задать стартовый номер используемого **DO**.

Блок также имеет диагностические выходы: **sts** равный **1**, если блок работает корректно, и номеру ошибки в случае ошибки, а также логический **vld** который изменяется между **1** и **0** по аналогичным правилам.



#### внимание

Если число входов блока (с учетом сдвига **pos**) превышает реальное количество выходов контроллера, то блок установит **sts = 2**, **vld = 0** и повлияет только на входы, попадающие в корректный диапазон.



#### внимание

Не рекомендуется использование нескольких блоков данного типа в одном проекте, так как это приводит к цикличной перезаписи результатов их работы.



#### ПРИМЕЧАНИЕ

Работает медленнее, чем <u>блок дискретных выходов DO 1...4</u>, поэтому рекомендуется размещать в месте работы **Фон**.



Рисунок 1.20 – Дискретные выходы DO 5...18 (210-11-DO)

## 1.3 Раздел ПЛК210-12

В данном разделе размещены блоки для работы с входами/выходами ПЛК210-12.

|  | Таблица 1.19 – Соотнесение пе | риферии | і ПЛК210-12 с блоками | библиотеки | paOwenIO |
|--|-------------------------------|---------|-----------------------|------------|----------|
|--|-------------------------------|---------|-----------------------|------------|----------|

| Входы/выходы<br>ПЛК | Расположение на корпусе | Блок paOwenIO        | Назначение блока        |
|---------------------|-------------------------|----------------------|-------------------------|
| DO 14               | Слева                   | <u>210-12-D0</u>     | Задание состояния       |
|                     |                         | 210-12-DO-PWM        | Режим ШИМ               |
|                     | (1000                   | 210-12-FDI           | Отображение состояния   |
| FDI 18              | Слева                   | 210-12-FDI-Frequency | Режим измерения частоты |
| DI 912              | Слева                   | <u>210-12-DI</u>     | Отображение состояния   |
| DO 512              | Справа                  | <u>210-12-D0</u>     | Задание состояния       |
| DI 1324             | Справа                  | <u>210-12-DI</u>     | Отображение состояния   |



Рисунок 1.21 – ПЛК210-12

## 1.3.1 Дискретные выходы DO 1...4 (210-12-DO)

Блок **210-12-DO** предназначен для работы с дискретными выходами **DO 1...4**. Физически они расположены на левой стороне контроллера. Раздел библиотеки: **ПЛК210-12**.

Блок **210-12-DO** задает режим работы выходов – переключение логического сигнала, для работы выходов в режиме ШИМ используется блок <u>210-12-DO-PWM</u>.

| Таблица 1.20 – Назначение входов и в | выходов 210-12-DO |
|--------------------------------------|-------------------|
|--------------------------------------|-------------------|

| Входы  |                                                                             |  |  |
|--------|-----------------------------------------------------------------------------|--|--|
| pos    | Стартовый номер используемого <b>DO: 0 – DO 1, 1 – DO 2</b> и т.д.          |  |  |
| do     | Значения выходов <b>DO 14</b> (циклический)                                 |  |  |
| Выходы |                                                                             |  |  |
| sts    | Статус:                                                                     |  |  |
|        | <b>0</b> – работы не выполнялось (инициализация);                           |  |  |
|        | 1 – блок работает без ошибок;                                               |  |  |
|        | 2 – сумма <b>роз</b> и количества входов блока превышает количество выходов |  |  |
|        | контроллера;                                                                |  |  |
|        | -14 – ошибка записи состояния выхода;                                       |  |  |
|        | - <b>32</b> – ошибка инициализации устройства;                              |  |  |
|        | -33 – ошибка связи с выходами                                               |  |  |
| vld    | Достоверность:                                                              |  |  |
|        | <b>0</b> – ошибка;                                                          |  |  |
|        | 1 – корректная работа                                                       |  |  |

Для каждого физического выхода контроллера в блоке имеется возможность создать вход **do**, при подаче сигнала на который, загорается индикатор и генерируется выходной сигнал.

Параметр **pos** позволяет задать стартовый номер используемого **DO**. Данный параметр полезен, если в проекте требуется создать несколько блоков **DO** (например, если какие-то из промежуточных выходов работают в других режимах).

Блок также имеет диагностические выходы: **sts** равный **1**, если блок работает корректно, и номеру ошибки в случае ошибки, а также логический **vld**, который изменяется между **1** и **0** по аналогичным правилам.



#### внимание

Если число входов блока (с учетом сдвига **pos**) превышает реальное количество выходов контроллера, то блок установит **sts** = **2**, **vld** = **0** и повлияет только на входы, попадающие в корректный диапазон.



#### внимание

Если в проект добавлены блоки таким образом, что для одного и того же выхода используется несколько режимов работы, то ни для одного из режимов не гарантируется нормальная работа.



Рисунок 1.22 – Дискретные выходы DO 1...4 (210-12-DO)

## 1.3.2 ШИМ дискретных выходов DO 1...4 (210-12-DO-PWM)

Блок **210-12-DO-PWM** предназначен для работы с дискретными выходами **DO 1...4** в режиме ШИМ. Физически они расположены на левой стороне контроллера. Раздел библиотеки: **ПЛК210-12**.

| Входы |                                                                                  |  |
|-------|----------------------------------------------------------------------------------|--|
| pos   | Стартовый номер используемого <b>DO: 0 – DO 1, 1 – DO 2</b> и т.д.               |  |
| prd   | Период ШИМ выходов <b>DO 14</b> ПЛК в микросекундах (циклический)                |  |
| duty  | Длительность импульса ШИМ выходов <b>DO 14</b> ПЛК в микросекундах (циклический) |  |
|       | Выходы                                                                           |  |
|       | Статус:                                                                          |  |
| sts   | <b>0</b> — работы не выполнялось (инициализация);                                |  |
|       | <b>1</b> – блок работает без ошибок;                                             |  |
|       | 2 – сумма <b>роз</b> и количества входов блока превышает количество выходов      |  |
|       | контроллера;                                                                     |  |
|       | 3 – не удалось задать длительность импульса;                                     |  |
|       | <b>4</b> — не удалось задать период работы;                                      |  |
|       | -32 — ошибка соединения с устройством для установки параметров ШИМ;              |  |
|       | - <b>33</b> — ошибка активации выхода;                                           |  |
|       | - <b>34</b> — ошибка при установке полярности                                    |  |

| vld | Достоверность:<br><b>0</b> – ошибка; |
|-----|--------------------------------------|
|     | 1 – корректная работа                |

Параметр **pos** позволяет задать стартовый номер используемого **DO**. Данный параметр полезен, если в проекте требуется создать несколько блоков **DO** (например, если какие-то из промежуточных выходов работают в других режимах).

Для каждого физического выхода контроллера в блоке имеется возможность создать входы **prd** — период ШИМ в микросекундах и **duty** — длительность импульса ШИМ в микросекундах.

Блок также имеет диагностические выходы: **sts** равный **1**, если блок работает корректно, и номеру ошибки в случае ошибки, а также логический **vld** который изменяется между **1** и **0** по аналогичным правилам.



#### ВНИМАНИЕ

Если число входов блока (с учетом сдвига **pos**) превышает реальное количество выходов контроллера, то блок установит **sts = 2**, **vld = 0** и повлияет только на входы, попадающие в корректный диапазон.



#### ВНИМАНИЕ

Если в проект добавлены блоки таким образом, что для одного и того же выхода используется несколько режимов работы, то ни для одного из режимов не гарантируется нормальная работа.





## 1.3.3 Быстрые дискретные входы FDI 1...8 (210-12-FDI)

Блок **210-12-FDI** предназначен для работы с быстрыми дискретными входами **FDI 1...8**. Физически они расположены на левой стороне контроллера. Раздел библиотеки: **ПЛК210-12**.

| Таблица 1.22 – Назначение в | ходов и выходов 210-12-FDI |
|-----------------------------|----------------------------|
|-----------------------------|----------------------------|

| Входы |                                                                                                                                                                                                                                                                                                                                                  |  |  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| pos   | Стартовый номер используемого FDI: 0 – FDI 1, 1 – FDI 2 и т.д.                                                                                                                                                                                                                                                                                   |  |  |
|       | Выходы                                                                                                                                                                                                                                                                                                                                           |  |  |
| sts   | Статус:<br><b>0</b> – работы не выполнялось (инициализация);<br><b>1</b> – блок работает без ошибок;<br><b>2</b> – сумма <b>pos</b> и количества выходов блока превышает количество входов<br>контроллера;<br><b>3</b> – ошибка чтения состояния входа;<br><b>-32</b> – ошибка связи со входами;<br><b>-33</b> – ошибка инициализации устройства |  |  |

| vld | Достоверность:<br><b>0</b> – ошибка;  |
|-----|---------------------------------------|
|     | 1 – корректная работа                 |
| di  | Входы <b>FDI 18</b> ПЛК (циклический) |

Для каждого физического входа контроллера в блоке имеется возможность создать выход

Параметр **pos** позволяет задать стартовый номер используемого **FDI**. Данный параметр полезен, если в проекте требуется создать несколько блоков **FDI** (например, если какие-то из промежуточных входов работают в других режимах).

Блок также имеет диагностические выходы: **sts** равный **1**, если блок работает корректно, и номеру ошибки в случае ошибки, а также логический **vld**, который изменяется только между **1** и **0** по аналогичным правилам.



di.

#### внимание

Если число выходов блока (с учетом сдвига **pos**) превышает реальное количество входов контроллера, то блок установит **sts = 2**, **vld = 0** и повлияет только на выходы, попадающие в корректный диапазон.



Рисунок 1.24 – Быстрые дискретные входы (210-12-FDI)

## 1.3.4 Измерение частоты FDI 1...8 (210-12-FDI-Frequency)

Блок **210-12-FDI-Frequency** предназначен для работы с дискретными входами **FDI 1...8** в режиме измерения частоты. Физически они расположены на левой стороне контроллера. Раздел библиотеки: **ПЛК210-12**.

| Таблица 1.23 – Назначение входов и выхо | одов 210-12-FDI-Frequency |
|-----------------------------------------|---------------------------|
|-----------------------------------------|---------------------------|

| Входы  |                                                                      |  |
|--------|----------------------------------------------------------------------|--|
| pos    | Стартовый номер используемого FDI: 0 – FDI 1, 1 – FDI 2 и т.д.       |  |
| Выходы |                                                                      |  |
|        | Статус:                                                              |  |
|        | <b>0</b> – работы не выполнялось (инициализация);                    |  |
|        | <b>1</b> – блок работает без ошибок;                                 |  |
|        | 2 – сумма роз и количества выходов блока превышает количество входов |  |
| sts    | контроллера;                                                         |  |
|        | <b>-18</b> — ошибка чтения состояния входа;                          |  |
|        | - <b>32</b> — ошибка инициализации устройства;                       |  |
|        | -33 — ошибка соединения с устройством для измерения;                 |  |
|        | -34 — ошибка переключения входов в режим измерения                   |  |
|        | Достоверность:                                                       |  |
| vld    | <b>0</b> – ошибка;                                                   |  |
|        | <b>1</b> – корректная работа                                         |  |

Параметр **pos** позволяет задать стартовый номер используемого **FDI**. Данный параметр полезен, если в проекте требуется создать несколько блоков **FDI** (например, если какие-то из промежуточных выходов работают в других режимах).

Для каждого физического входа контроллера в блоке имеется возможность создать выходы **prd** – период между импульсами в микросекундах, **duty** – длительность импульса в микросекундах, **frq** – частота импульсов в Гц.

Блок также имеет диагностические выходы: **sts** равный **1**, если блок работает корректно, и номеру ошибки в случае ошибки, а также логический **vld** который изменяется между **1** и **0** по аналогичным правилам.



#### внимание

Если число выходов блока (с учетом сдвига **pos**) превышает реальное количество входов контроллера, то блок установит **sts = 2**, **vld = 0** и повлияет только на выходы, попадающие в корректный диапазон.



#### внимание

Если в проект добавлены блоки таким образом, что для одного и того же входа используется несколько режимов работы, то ни для одного из режимов не гарантируется нормальная работа.



Рисунок 1.25 – Измерение частоты FDI 1...8 (210-12-FDI-Frequency)

## 1.3.5 Дискретные входы DI 9...12 (210-12-DI)

Блок **210-12-DI** предназначен для работы с дискретными входами **DI 9...12**. Физически они расположены на левой стороне контроллера. Раздел библиотеки: **ПЛК210-12**.

| Таблица 1.24 – Назначение входов и вь | іходов 210-12-DI |
|---------------------------------------|------------------|
|---------------------------------------|------------------|

| Входы  |                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| pos    | Стартовый номер используемого <b>DI: 8 – DI 9, 9 – DI 10</b> и т.д.                                                                                                                                                                                                                                                                                |  |  |  |
| Выходы |                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| sts    | Статус:<br><b>0</b> – работы не выполнялось (инициализация);<br><b>1</b> – блок работает без ошибок;<br><b>2</b> – сумма <b>pos</b> и количества выходов блока превышает количество входов<br>контроллера;<br><b>3</b> – ошибка чтения состояния входа;<br>- <b>32</b> – ошибка связи со входами;<br>- <b>33</b> – ошибка инициализации устройства |  |  |  |
| vld    | Достоверность:<br>О – ошибка;<br>1 – корректная работа                                                                                                                                                                                                                                                                                             |  |  |  |
| di     | Входы <b>DI 912</b> ПЛК (циклический)                                                                                                                                                                                                                                                                                                              |  |  |  |

Для каждого физического входа контроллера в блоке имеется возможность создать выход

di.

Параметр **pos** позволяет задать стартовый номер используемого **DI**.

Блок также имеет диагностические выходы: **sts** равный **1**, если блок работает корректно, и номеру ошибки в случае ошибки, а также логический **vld** который изменяется только между **1** и **0** по аналогичным правилам.



#### внимание

Если число выходов блока (с учетом сдвига **pos**) превышает реальное количество входов контроллера, то блок установит **sts = 2**, **vld = 0** и повлияет только на выходы, попадающие в корректный диапазон.



Рисунок 1.26 – Дискретные входы DI 9...12 (210-12-DI)

## 1.3.6 Дискретные выходы DO 5...12 (210-12-DO)

Блок **210-12-DO** предназначен для работы с дискретными выходами **DO 5...12**. Физически они расположены на правой стороне контроллера. Раздел библиотеки: **ПЛК210-12**.

| Таблица 1.25 –Назначе | ние входов и выходов | 210-12-DO |
|-----------------------|----------------------|-----------|
|-----------------------|----------------------|-----------|

| Входы  |                                                                             |  |  |  |  |
|--------|-----------------------------------------------------------------------------|--|--|--|--|
| pos    | Стартовый номер используемого <b>DO</b> : <b>0 – DO 5, 1 – DO 6</b> и т.д.  |  |  |  |  |
| do     | Выходы <b>DO 512</b> ПЛК (циклический)                                      |  |  |  |  |
| Выходы |                                                                             |  |  |  |  |
| sts    | Статус:                                                                     |  |  |  |  |
|        | <b>0</b> – работы не выполнялось (инициализация);                           |  |  |  |  |
|        | <b>1</b> – блок работает без ошибок;                                        |  |  |  |  |
|        | 2 – сумма <b>роз</b> и количества входов блока превышает количество выходов |  |  |  |  |
|        | контроллера;                                                                |  |  |  |  |
|        | <b>-1</b> – ошибка связи с выходами, работа не выполняется;                 |  |  |  |  |
|        | -2 – ошибка записи состояния выходов;                                       |  |  |  |  |
|        | -32 — ошибка связи с выходами                                               |  |  |  |  |
|        | Достоверность:                                                              |  |  |  |  |
| vld    | <b>0</b> – ошибка;                                                          |  |  |  |  |
|        | 1 – корректная работа                                                       |  |  |  |  |

Для каждого физического выхода контроллера в блоке имеется возможность создать вход **do**, при подаче сигнала на который, загорается индикатор и генерируется выходной сигнал.

Параметр **роз** позволяет задать стартовый номер используемого **DO**.

Блок также имеет диагностические выходы: **sts** равный **1**, если блок работает корректно, и номеру ошибки в случае ошибки, а также логический **vld** который изменяется между **1** и **0** по аналогичным правилам.



#### внимание

Если число входов блока (с учетом сдвига **pos**) превышает реальное количество выходов контроллера, то блок установит **sts** = **2**, **vld** = **0** и повлияет только на входы, попадающие в корректный диапазон.



#### внимание

Не рекомендуется использование нескольких блоков данного типа в одном проекте, так как это приводит к цикличной перезаписи результатов их работы.



di.

#### ПРИМЕЧАНИЕ

Работает медленнее, чем <u>блок дискретных выходов DO 1...4</u>, поэтому рекомендуется размещать в месте работы **Фон**.



Рисунок 1.27 – Дискретные выходы DO 5...12 (210-12-DO)

## 1.3.7 Дискретные входы DI 13...24 (210-12-DI)

Блок **210-12-DI** предназначен для работы с дискретными входами **DI 13...24**. Физически они расположены на правой части контроллера. Раздел библиотеки: **ПЛК210-12**.

| Таблица 1.26 | -Назначение входов и выходов 210-12-DI |
|--------------|----------------------------------------|
|--------------|----------------------------------------|

| Входы  |                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| pos    | Стартовый номер используемого DI: <b>0 – DI 13</b> , <b>1 – DI 14</b> и т.д.                                                                                                                                                                                                                                                                       |  |  |  |
| Выходы |                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| sts    | Статус:<br><b>0</b> – работы не выполнялось (инициализация);<br><b>1</b> – блок работает без ошибок;<br><b>2</b> – сумма <b>pos</b> и количества выходов блока превышает количество входов<br>контроллера;<br><b>3</b> – ошибка чтения состояния входа;<br>- <b>32</b> – ошибка связи со входами;<br>- <b>33</b> – ошибка инициализации устройства |  |  |  |
| vld    | Достоверность:<br>О – ошибка;<br>1 – корректная работа                                                                                                                                                                                                                                                                                             |  |  |  |
| di     | Входы <b>DI 1324</b> ПЛК (циклический)                                                                                                                                                                                                                                                                                                             |  |  |  |

Для каждого физического входа контроллера в блоке имеется возможность создать выход

Параметр **pos** позволяет задать стартовый номер используемого **DI**.

Блок также имеет диагностические выходы: **sts** равный **1**, если блок работает корректно, и номеру ошибки в случае ошибки, а также логический **vld** который изменяется только между **1** и **0** по аналогичным правилам.



#### внимание

Если число входов блока (с учетом сдвига **pos**) превышает реальное количество выходов контроллера, то блок установит **sts** = **2**, **vld** = **0** и повлияет только на входы, попадающие в корректный диапазон.





## 1.4 Раздел ПЛК210-14

В данном разделе размещены блоки для работы с входами/выходами ПЛК210-14.

| Входы/выходы ПЛК | Расположение<br>на корпусе | Блок paOwenIO        | Назначение блока        |
|------------------|----------------------------|----------------------|-------------------------|
|                  | Слева                      | <u>210-14-DO</u>     | Задание состояния       |
| DO 14            |                            | 210-14-DO-PWM        | Режим ШИМ               |
|                  | Слева                      | <u>210-14-FDI</u>    | Отображение состояния   |
| FDI 18           |                            | 210-14-FDI-Frequency | Режим измерения частоты |
| DI 912           | Слева                      | <u>210-14-DI</u>     | Отображение состояния   |
| DO 512           | Справа                     | <u>210-14-DO</u>     | Задание состояния       |
| AI 14            | Справа                     | 210-14-AI            | Отображение состояния   |



Рисунок 1.29 – ПЛК210-14

## 1.4.1 Дискретные выходы DO 1...4 (210-14-DO)

Блок **210-14-DO** предназначен для работы с дискретными выходами **DO 1...4**. Физически они расположены на левой стороне контроллера. Раздел библиотеки: **ПЛК210-14**.

Блок **210-14-DO** задает режим работы выходов – переключение логического сигнала, для работы выходов в режиме ШИМ используется блок <u>210-14-DO-PWM</u>.

| Таблица 1.28 – Назначение входов и выходов 2 | 210-14-DO |
|----------------------------------------------|-----------|
|----------------------------------------------|-----------|

| Входы  |                                                                                                  |  |  |
|--------|--------------------------------------------------------------------------------------------------|--|--|
| pos    | Стартовый номер используемого <b>DO</b> : <b>0</b> – <b>DO 1</b> , <b>1</b> – <b>DO 2</b> и т.д. |  |  |
| do     | Значения выходов <b>DO 14</b> (циклический)                                                      |  |  |
| Выходы |                                                                                                  |  |  |
|        | Статус:                                                                                          |  |  |
|        | 0 – работы не выполнялось (инициализация);                                                       |  |  |
|        | 1 – блок работает без ошибок;                                                                    |  |  |
| ctc    | 2 – сумма <b>роз</b> и количества входов блока превышает количество выходов                      |  |  |
| 515    | контроллера;                                                                                     |  |  |
|        | -14 – ошибка записи состояния выхода;                                                            |  |  |
|        | -32 — ошибка инициализации устройства;                                                           |  |  |
|        | -33 — ошибка связи с выходами                                                                    |  |  |

| vld | Достоверность:               |
|-----|------------------------------|
|     | <b>0</b> – ошибка;           |
|     | <b>1</b> – корректная работа |

Для каждого физического выхода контроллера в блоке имеется возможность создать вход **do**, при подаче сигнала на который, загорается индикатор и генерируется выходной сигнал.

Параметр **pos** позволяет задать стартовый номер используемого **DO**. Данный параметр полезен, если в проекте требуется создать несколько блоков **DO** (например, если какие-то из промежуточных выходов работают в других режимах).

Блок также имеет диагностические выходы: **sts** равный **1**, если блок работает корректно, и номеру ошибки в случае ошибки, а также логический **vld**, который изменяется между **1** и **0** по аналогичным правилам.



Рисунок 1.30 – Дискретные выходы DO 1...4 (210-14-DO)



#### ВНИМАНИЕ

Если число входов блока (с учетом сдвига **pos**) превышает реальное количество выходов контроллера, то блок установит **sts = 2**, **vld = 0** и повлияет только на выходы, попадающие в корректный диапазон.



#### внимание

Если в проект добавлены блоки таким образом, что для одного и того же выхода используется несколько режимов работы, то ни для одного из режимов не гарантируется нормальная работа.

## 1.4.2 ШИМ дискретных выходов DO 1...4 (210-14-DO-PWM)

Блок **210-14-DO-PWM** предназначен для работы с дискретными выходами **DO 1...4** в режиме ШИМ. Физически они расположены на левой стороне контроллера. Раздел библиотеки: **ПЛК210-14**.

#### Таблица 1.29 – Назначение входов и выходов 210-14-DO-PWM

| Входы |                                                                                  |  |
|-------|----------------------------------------------------------------------------------|--|
| pos   | Стартовый номер используемого DO: <b>0 – DO 1, 1 – DO 2</b> и т.д.               |  |
| prd   | Период ШИМ выходов <b>DO 14</b> ПЛК в микросекундах (циклический)                |  |
| duty  | Длительность импульса ШИМ выходов <b>DO 14</b> ПЛК в микросекундах (циклический) |  |

| Выходы |                                                                             |  |
|--------|-----------------------------------------------------------------------------|--|
| sts    | Статус:                                                                     |  |
|        | 0 – работы не выполнялось (инициализация);                                  |  |
|        | <b>1</b> – блок работает без ошибок;                                        |  |
|        | 2 – сумма <b>роз</b> и количества входов блока превышает количество выходов |  |
|        | контроллера;                                                                |  |
|        | 3 – не удалось задать длительность импульса;                                |  |
|        | 4 – не удалось задать период работы;                                        |  |
|        | -32 – ошибка соединения с устройством для установки параметров ШИМ;         |  |
|        | -33 — ошибка активации выхода;                                              |  |
|        | -34 — ошибка при установке полярности                                       |  |
|        | Достоверность:                                                              |  |
| vld    | <b>0</b> – ошибка;                                                          |  |
|        | 1 – корректная работа                                                       |  |

Параметр **pos** позволяет задать стартовый номер используемого **DO**. Данный параметр полезен, если в проекте требуется создать несколько блоков **DO** (например, если какие-то из промежуточных выходов работают в других режимах).

Для каждого физического выхода контроллера в блоке имеется возможность создать входы **prd** — период ШИМ в микросекундах и **duty** — длительность импульса ШИМ в микросекундах.

Блок также имеет диагностические выходы: **sts** равный **1**, если блок работает корректно, и номеру ошибки в случае ошибки, а также логический **vld** который изменяется между **1** и **0** по аналогичным правилам.



#### ВНИМАНИЕ

Если число входов блока (с учетом сдвига **pos**) превышает реальное количество выходов контроллера, то блок установит **sts = 2**, **vld = 0** и повлияет только на выходы, попадающие в корректный диапазон.



#### внимание

Если в проект добавлены блоки таким образом, что для одного и того же выхода используется несколько режимов работы, то ни для одного из режимов не гарантируется нормальная работа.



Рисунок 1.31 – ШИМ дискретных выходов DO 1...4 (210-14-DO-PWM)

#### 1.4.3 Быстрые дискретные входы FDI 1...8 (210-14-FDI)

Блок **210-14-FDI** предназначен для работы с быстрыми дискретными входами **FDI 1...8**. Физически они расположены на левой стороне контроллера. Раздел библиотеки: **ПЛК210-14**.

#### Таблица 1.30 – Назначение входов и выходов 210-14-FDI

| Входы  |                                                                                                                                                                                                                                                                                                                                                  |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| pos    | Стартовый номер используемого FDI: <b>0 – FDI 1, 1 – FDI 2</b> и т.д.                                                                                                                                                                                                                                                                            |  |  |
| Выходы |                                                                                                                                                                                                                                                                                                                                                  |  |  |
| sts    | Статус:<br><b>0</b> – работы не выполнялось (инициализация);<br><b>1</b> – блок работает без ошибок;<br><b>2</b> – сумма <b>pos</b> и количества выходов блока превышает количество входов<br>контроллера;<br><b>3</b> – ошибка чтения состояния входа;<br><b>-32</b> – ошибка связи со входами;<br><b>-33</b> – ошибка инициализации устройства |  |  |
| vld    | Достоверность:<br>О – ошибка;<br>1 – корректная работа                                                                                                                                                                                                                                                                                           |  |  |
| di     | Входы <b>FDI 18</b> ПЛК (циклический)                                                                                                                                                                                                                                                                                                            |  |  |

Для каждого физического входа контроллера в блоке имеется возможность создать выход

Параметр **pos** позволяет задать стартовый номер используемого **FDI**. Данный параметр полезен, если в проекте требуется создать несколько блоков **FDI** (например, если какие-то из промежуточных входов работают в других режимах).

Блок также имеет диагностические выходы: **sts** равный **1**, если блок работает корректно, и номеру ошибки в случае ошибки, а также логический **vld** который изменяется только между **1** и **0** по аналогичным правилам.



di.

#### внимание

Если число выходов блока (с учетом сдвига **pos**) превышает реальное количество входов контроллера, то блок установит **sts = 2**, **vld = 0** и повлияет только на выходы, попадающие в корректный диапазон.



Рисунок 1.32 – Быстрые дискретные входы (210-14-FDI)

## 1.4.4 Измерение частоты FDI 1...8 (210-14-FDI-Frequency)

Блок **210-14-FDI-Frequency** предназначен для работы с дискретными входами **FDI 1...8** в режиме измерения частоты. Физически они расположены на левой стороне контроллера. Раздел библиотеки: **ПЛК210-14**.

#### Таблица 1.31 – Назначение входов и выходов 210-14-FDI-Frequency

| Входы   |                                                                             |  |  |  |
|---------|-----------------------------------------------------------------------------|--|--|--|
| pos     | Стартовый номер используемого FDI: 0 – FDI 1, 1 – FDI 2 и т.д.              |  |  |  |
| Выходы  |                                                                             |  |  |  |
| Статус: |                                                                             |  |  |  |
|         | 0 – работы не выполнялось (инициализация);                                  |  |  |  |
|         | <b>1</b> – блок работает без ошибок;                                        |  |  |  |
|         | 2 – сумма <b>роз</b> и количества выходов блока превышает количество входов |  |  |  |
| sts     | контроллера;                                                                |  |  |  |
|         | -18 – ошибка чтения состояния входа;                                        |  |  |  |
|         | -32 – ошибка инициализации устройства;                                      |  |  |  |
|         | -33 – ошибка соединения с устройством для измерения;                        |  |  |  |
|         | -34 – ошибка переключения входов в режим измерения                          |  |  |  |
|         | Достоверность:                                                              |  |  |  |
| vld     | <b>0</b> – ошибка;                                                          |  |  |  |
|         | <b>1</b> – корректная работа                                                |  |  |  |

Параметр **pos** позволяет задать стартовый номер используемого **FDI**. Данный параметр полезен, если в проекте требуется создать несколько блоков **FDI** (например, если какие-то из промежуточных выходов работают в других режимах).

Для каждого физического входа контроллера в блоке имеется возможность создать выходы **prd** – период между импульсами в микросекундах, **duty** – длительность импульса в микросекундах, **frq** – частота импульсов в Гц.

Блок также имеет диагностические выходы: **sts** равный **1**, если блок работает корректно, и номеру ошибки в случае ошибки, а также логический **vld** который изменяется между **1** и **0** по аналогичным правилам.



#### внимание

Если число выходов блока (с учетом сдвига **pos**) превышает реальное количество входов контроллера, то блок установит **sts = 2**, **vld = 0** и повлияет только на выходы, попадающие в корректный диапазон.



#### внимание

Если в проект добавлены блоки таким образом, что для одного и того же входа используется несколько режимов работы, то ни для одного из режимов не гарантируется нормальная работа.





## 1.4.5 Дискретные входы DI 9...12 (210-14-DI)

Блок **210-14-DI** предназначен для работы с дискретными входами **DI 9...12**. Физически они расположены на левой стороне контроллера. Раздел библиотеки: **ПЛК210-14**.

Таблица 1.32 – Назначение входов и выходов 210-14-DI

| Входы  |                                                                      |  |  |
|--------|----------------------------------------------------------------------|--|--|
| pos    | Стартовый номер используемого <b>DI: 8 – DI 9, 9 – DI 10</b> и т.д.  |  |  |
| Выходы |                                                                      |  |  |
|        | Статус:                                                              |  |  |
| sts    | <b>0</b> — работы не выполнялось (инициализация);                    |  |  |
|        | <b>1</b> – блок работает без ошибок;                                 |  |  |
|        | 2 – сумма роз и количества выходов блока превышает количество входов |  |  |
|        | контроллера;                                                         |  |  |
|        | <b>3</b> – ошибка чтения состояния входа;                            |  |  |
|        | - <b>32</b> — ошибка связи со входами;                               |  |  |
|        | -33 — ошибка инициализации устройства                                |  |  |
|        | Достоверность:                                                       |  |  |
| vld    | <b>0</b> – ошибка;                                                   |  |  |
|        | <b>1</b> – корректная работа                                         |  |  |
| di     | Входы <b>DI 912</b> ПЛК (циклический)                                |  |  |

Для каждого физического входа контроллера в блоке имеется возможность создать выход

di.

Параметр **pos** позволяет задать стартовый номер используемого **DI**.

Блок также имеет диагностические выходы: **sts** равный **1**, если блок работает корректно, и номеру ошибки в случае ошибки, а также логический **vld** который изменяется только между **1** и **0** по аналогичным правилам.



#### внимание

Если число выходов блока (с учетом сдвига **pos**) превышает реальное количество входов контроллера, то блок установит **sts = 2**, **vld = 0** и повлияет только на выходы, попадающие в корректный диапазон.



Рисунок 1.34 – Дискретные входы DI 9...12 (210-14-DI)

## 1.4.6 Дискретные выходы DO 5...12 (210-14-DO)

Блок **210-14-DO** предназначен для работы с дискретными выходами **DO 5...12**. Физически они расположены на правой стороне контроллера. Раздел библиотеки: **ПЛК210-14**.

#### Таблица 1.33 – Назначение входов и выходов 210-12-DO

| Входы  |                                                                                                  |  |  |
|--------|--------------------------------------------------------------------------------------------------|--|--|
| pos    | Стартовый номер используемого <b>DO</b> : <b>0</b> – <b>DO 5</b> , <b>1</b> – <b>DO 6</b> и т.д. |  |  |
| do     | Выходы <b>DO 512</b> ПЛК (циклический)                                                           |  |  |
| Выходы |                                                                                                  |  |  |
|        | Статус:                                                                                          |  |  |
|        | <b>0</b> – работы не выполнялось (инициализация);                                                |  |  |
|        | <b>1</b> – блок работает без ошибок;                                                             |  |  |
| ctc    | 2 – сумма роз и количества входов блока превышает количество выходов                             |  |  |
| 515    | контроллера;                                                                                     |  |  |
|        | <ul> <li>-1 – ошибка связи с выходами, работа не выполняется;</li> </ul>                         |  |  |
|        | -2 – ошибка записи состояния выходов;                                                            |  |  |
|        | - <b>32</b> — ошибка связи с выходами                                                            |  |  |
|        | Достоверность:                                                                                   |  |  |
| vld    | <b>0</b> – ошибка;                                                                               |  |  |
|        | <b>1</b> – корректная работа                                                                     |  |  |

Для каждого физического выхода контроллера в блоке имеется возможность создать вход **do**, при подаче сигнала на который, загорается индикатор и генерируется выходной сигнал.

Параметр **роз** позволяет задать стартовый номер используемого **DO**.

Блок также имеет диагностические выходы: **sts** равный **1**, если блок работает корректно, и номеру ошибки в случае ошибки, а также логический **vld** который изменяется между **1** и **0** по аналогичным правилам.

#### внимание

Если число входов блока (с учетом сдвига **pos**) превышает реальное количество выходов контроллера, то блок установит **sts = 2**, **vld = 0** и повлияет только на входы, попадающие в корректный диапазон.



#### внимание

Не рекомендуется использование нескольких блоков данного типа в одном проекте, так как это приводит к цикличной перезаписи результатов их работы.



#### ПРИМЕЧАНИЕ

Работает медленнее, чем <u>блок дискретных выходов DO 1...4</u>, поэтому рекомендуется размещать в месте работы **Фон**.



Рисунок 1.35 – Дискретные выходы DO 5...12 (210-14-DO)

## 1.4.7 Аналоговые входы AI 1...4 (210-14-AI)

Блок **210-14-AI** предназначен для работы с аналоговыми входами контроллера **AI 1...4**. Физически они расположены на правой стороне контроллера. Раздел библиотеки: **ПЛК210-14**.

Работа блока занимает довольно длительное время, поэтому рекомендуется размещать в месте работы **Фон**.

| Входы |                                                                                                                                                                                                                                                                                                                                              |  |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| mxadc | Учитывать время опроса. Если <b>mxadc = 1</b> , то учитываются периоды опроса входов <b>freq</b>                                                                                                                                                                                                                                             |  |  |
|       | Циклические входы                                                                                                                                                                                                                                                                                                                            |  |  |
| snst  | Тип датчика ( <u>табл. 1.32</u> ). Если получать данные со входа не планируется, следует установить <b>SENS_OFF</b>                                                                                                                                                                                                                          |  |  |
| fltr  | Полоса фильтра в единицах измеряемой величины: <b>099</b> , при <b>0</b> – отключена.<br>Если разность между результатами измерений входной величины, выполненными в<br>двух последних циклах опроса, превышает данную величину, то измеренное                                                                                               |  |  |
|       | значение отбрасывается                                                                                                                                                                                                                                                                                                                       |  |  |
| shift | Сдвиг для коррекции входного сигнала путем прибавления данного значения к измеренной величине                                                                                                                                                                                                                                                |  |  |
| incl  | Наклон для коррекции входного сигнала путем умножения измеренной величины на поправочный коэффициент                                                                                                                                                                                                                                         |  |  |
| ainh  | Верхняя граница выходного сигнала датчика. Соответствует максимальному уровню выходного сигнала датчика, служит для масштабирования шкалы измерения                                                                                                                                                                                          |  |  |
| ainl  | Нижняя граница выходного сигнала датчика. Соответствует минимальному уровню выходного сигнала датчика                                                                                                                                                                                                                                        |  |  |
| cft   | Постоянная времени фильтра в секундах. Используется для сглаживания (демпфирования) сигнала с целью устранения шумовых составляющих                                                                                                                                                                                                          |  |  |
| freq  | Период опроса: <b>0,610</b> секунд (задается в мс), учитывается, когда <b>mxadc = 1</b> , иначе работает с минимально возможным периодом                                                                                                                                                                                                     |  |  |
|       | Выходы                                                                                                                                                                                                                                                                                                                                       |  |  |
| sts   | Статус:<br><b>0</b> – работы не выполнялось (инициализация);<br><b>1</b> – блок работает без ошибок;<br><b>-1</b> – ошибка инициализации устройства, работа не выполняется;<br><b>-2</b> – ошибка чтения результатов измерения;<br><b>-3</b> – ошибка записи параметров входов;                                                              |  |  |
|       | <ul> <li>-32 – количество входов олока превышает возможное;</li> <li>-33 – количество входов блока не соответствует количеству выходов;</li> <li>-34 – не удалось установить соединение с аналоговыми входами;</li> <li>-35 – ошибка инициализации устройства;</li> <li>-36 – запуск на контроллере, не имеющем аналоговых входов</li> </ul> |  |  |
| vld   | Достоверность:<br>О – ошибка;<br>1 – корректная работа                                                                                                                                                                                                                                                                                       |  |  |
|       | Циклические выходы                                                                                                                                                                                                                                                                                                                           |  |  |
| rslt  | Полученное значение                                                                                                                                                                                                                                                                                                                          |  |  |
| time  | Время измерения в десятках миллисекунд. Отсчитывается от запуска контроллера и обнуляется при достижении 65535 (около 11 минут)                                                                                                                                                                                                              |  |  |
| stsi  | Код ошибки ( <u>табл. 1.33</u> )                                                                                                                                                                                                                                                                                                             |  |  |
| msk   | Маска кода ошибки ( <u>табл. 1.33</u> )                                                                                                                                                                                                                                                                                                      |  |  |
| vldi  | Достоверность:<br>О – корректная работа;<br>1 – ошибка                                                                                                                                                                                                                                                                                       |  |  |

## Таблица 1.34 – Назначение входов и выходов 210-14-АІ

Для каждого физического входа контроллера есть возможность задать параметры: тип датчика, полосу фильтра и т.д.

Блок также имеет диагностические выходы: **sts** равный **1**, если блок работает корректно, и номеру ошибки в случае ошибки, а также логический **vld** который изменяется только между **1** и **0** по аналогичным правилам.

При возникновении ошибки у конкретного входа (**stsi** не равен **0x00**), в качестве значения измерения и времени сохраняются последние корректные данные.



#### внимание

В целях стабилизации времени выполнения блока, записывается не более одного входного параметра за цикл (если изменилось больше, они будут записаны, но в следующих). Также, каждое изменение входного параметра приводит к ошибке **0xF6** (данные не готовы, необходимо дождаться результатов измерения). Исходя из данных особенностей следует быть крайне осторожным с использованием в качестве входных параметров программно-генерируемых значений (выходов других блоков).



Рисунок 1.36 – Аналоговые входы (210-14-АІ)

| Значение     | Датчик или входной сигнал  | Диапазон измерений |
|--------------|----------------------------|--------------------|
| SENS_OFF     | Выключен                   | -                  |
| SENS_50_50mV | –50+50 мВ                  | 0100 %             |
| SENS_1_1V    | -1+1 B                     | 0100 %             |
| SENS_4_20mA  | 420 мА                     | 0100 %             |
| SENS_0_20mA  | 020 мА                     | 0100 %             |
| SENS_0_5mA   | 05 мА                      | 0100 %             |
| SENS_0_2KOhm | 02 кОм                     | 0100 %             |
| SENS_0_5KOhm | 05 кОм                     | 0100 %             |
| Cu50         | Cu 50 (α = 0,00426 °C-1)   | −50+200 °C         |
| Cu100        | Cu 100 (α = 0,00426 °C-1)  | −50+200 °C         |
| Cu500        | Cu 500 (α = 0,00426 °C-1)  | −50+200 °C         |
| Cu1000       | Cu 1000 (α = 0,00426 °C-1) | −50+200 °C         |
| P50          | 50Π (α = 0,00391 °C-1)     | –200+850 °C        |
| P100         | 100Π (α = 0,00391 °C-1)    | –200+850 °C        |
| P500         | 500Π (α = 0,00391 °C-1)    | –200+850 °C        |
| P1000        | 1000П (а = 0,00391 °C-1)   | –200+850 °C        |
| M50          | 50M (α = 0,00428 °C-1)     | –180+200 °C        |
| M100         | 100M (α = 0,00428 °C-1)    | –180+200 °C        |
| M500         | 500M (α = 0,00428 °C-1)    | –180+200 °C        |
| M1000        | 1000M (α = 0,00428 °C-1)   | –180+200 °C        |

| Ni100     | Ni 100 (α = 0,00617 °C-1)  | –60+180 °C   |
|-----------|----------------------------|--------------|
| Ni500     | Ni 500 (α = 0,00617 °C-1)  | –60+180 °C   |
| Ni1000    | Ni 1000 (α = 0,00617 °C-1) | –60+180 °C   |
| Pt50      | Pt 50 (α = 0,00385 °C-1)   | –200+850 °C  |
| Pt100     | Pt 100 (α = 0,00385 °C-1)  | –200+850 °C  |
| Pt500     | Pt 500 (α = 0,00385 °C-1)  | –200+850 °C  |
| Pt1000    | Pt 1000 (α = 0,00385 °C-1) | –200+850 °C  |
| TCM_53Ohm | ТСМ гр. 23                 | –50+200 °C   |
| TXK_L     | ТХК (L)                    | –200+800 °C  |
| ТЈК_Ј     | ТЖК (J)                    | –200+1200 °C |
| THH_N     | THH (N)                    | –200+1300 °C |
| TXA_K     | TXA (K)                    | –200+1360 °C |
| TPP_S     | тпп (S)                    | –50+1750 °C  |
| TPP_R     | ТПП (R)                    | –50+1750 °C  |
| ΤΜΚ_Τ     | ТМК (Т)                    | –250+400 °C  |
| TPR_B     | ТПР (В)                    | +200+1800 °C |
| TBP_A_1   | TBP (A-1)                  | 0+2500 °C    |
| TBP_A_2   | TBP (A-2)                  | 0+1800 °C    |
| TBP_A_3   | TBP (A-3)                  | 0+1800 °C    |
| tptl      | tP.tL                      | –200+900 °C  |

## Таблица 1.36 – Коды ошибок stsi и маска msk

| Код ошибки  | Маска | Описание                                                   |  |  |
|-------------|-------|------------------------------------------------------------|--|--|
| 0x00        | 0     | Нет ошибки                                                 |  |  |
| 0xF0        | 1     | Значение заведомо неверно                                  |  |  |
| 0           | 2     | Данные не готовы. Необходимо дождаться результатов первого |  |  |
| UXFO        | 2     | измерения после включения модуля                           |  |  |
| 0xF7        | 4     | Датчик отключен                                            |  |  |
| 0xF8        | 8     | Велика температура свободных концов ТП                     |  |  |
| 0xF9        | 16    | Мала температура свободных концов ТП                       |  |  |
| 0xFA        | 32    | Измеренное значение слишком велико                         |  |  |
| <b>OxFB</b> | 64    | Измеренное значение слишком мало                           |  |  |
| 0xFC        | 128   | Короткое замыкание датчика                                 |  |  |
| 0xFD        | 256   | Обрыв датчика                                              |  |  |
| <b>OxFE</b> | 512   | Отсутствие связи с АЦП                                     |  |  |
| 0xFF        | 1024  | Некорректный калибровочный коэффициент                     |  |  |

## 2 Примеры работы с блоками библиотеки paOwenIO

## 2.1 Получение аппаратной информации (OwenHWInfo)

Блок <u>OwenHWInfo</u> предоставляет аппаратную информацию о контроллере в программе пользователя: заводской номер, MAC-адрес (для Ethernet 4), измеренную температуру ПЛК, линейку и модификацию ПЛК, а также выдает **1** на выход **trm** при переходе контроллера на питание от ионистора (потеря питания по основным портам).

Для работы блока необходимо добавить его на любую страницу в месте работы **Фон**.

| b114 |         | 10   |                                         |
|------|---------|------|-----------------------------------------|
| Owe  | nHWInfo | 4мкс |                                         |
|      | i32     | sts  | <b>—</b> 1 статус: 1 - ОК; < 0 - ошибка |
|      | b       | vld  | -1 достоверность                        |
|      | str     | s/n  | — 136487231032520037 🛛 Заводской №      |
|      | str     | mac  | — 6611136b9c1e МАС-адрес                |
|      | flt     | temp | — 41.5 Температура °С                   |
|      | u32     | line | — 210 Линейка                           |
|      | u32     | mod  | — 12 Модификация                        |
|      | b       | trm  | – 0 Работа программы завершается        |



Помимо предоставления информации в программе ПЛК, *OwenHWInfo* формирует файл с данными для отображения сведений о запущенной программе в web-конфигураторе ПЛК во вкладке ПЛК/Информация.

| Состояние 🕨  | Имя хоста: plc210rk_12_polygon   |                                                           |  |  |  |  |
|--------------|----------------------------------|-----------------------------------------------------------|--|--|--|--|
| Система 🕨    | Информации о приложении          |                                                           |  |  |  |  |
| плк 🕶        | Информация                       |                                                           |  |  |  |  |
| Информация   | Версия                           | 267                                                       |  |  |  |  |
| Приложение   | Пользователь                     | A Application get Mail (1999) 713                         |  |  |  |  |
| Загрузки     | Имя проекта                      | project1                                                  |  |  |  |  |
| Службы 🕨     | Время компиляции                 | 04.04.2024 16:13:18                                       |  |  |  |  |
| Сеть 🕨       | Время запуска                    | 04.04.2024 16:14:02                                       |  |  |  |  |
| Croruorius   | Действующие лицензии             | paCore(975), paOpcUA(910), paControls(941), paOwenIO(111) |  |  |  |  |
| Статистика 🕨 | Ограниченные по времени лицензии |                                                           |  |  |  |  |
| Выйти        |                                  |                                                           |  |  |  |  |

Рисунок 1.38 -

#### Информация о запущенной программе в web-конфигураторе

Часть информации, предоставляемой в web-конфигураторе, также можно посмотреть во время подключения отладчиком Полигон при наведении на запущенный модуль.

| 1          |                                                                                        |  |  |  |  |
|------------|----------------------------------------------------------------------------------------|--|--|--|--|
| 🖃 💼 Проект |                                                                                        |  |  |  |  |
| 🗄 🛃 proje  | ect1 (···>                                                                             |  |  |  |  |
| Библиот    | Идентификатор: {5d0622db-d094-4783-b062-5712c9094809} (OK)<br>Версия проекта: 267 (OK) |  |  |  |  |
|            | Дата трансляции: 04.04.2024 16:13:18                                                   |  |  |  |  |
|            | Пользователь:                                                                          |  |  |  |  |
|            | Имя ПК:                                                                                |  |  |  |  |
|            |                                                                                        |  |  |  |  |
|            |                                                                                        |  |  |  |  |

Рисунок 1.39 – Тултип с информацией о модуле

Во время отключения питания по основным портам выход блока trm примет значение 1.

#### 2.2 Установка и получение системного времени ПЛК (OwenRTC)

С помощью блока <u>OwenRTC</u> можно установить часовой пояс и системное время контроллера.

Для работы блока необходимо добавить его на любую страницу в месте работы **Фон**.



Рисунок 1.40 – Работа OwenRTC

Для установки часового пояса следует задать его на входе **utc** и подать **1** на вход **setz**.



Рисунок 1.41 – Смена часового пояса OwenRTC

Получить системное время контроллера можно с помощью блока getTDN из библиотеки paCore.



Рисунок 1.42 – Получение системного времени getTDN

Для установки системного времени следует установить на входах блока year (год), mth (месяц), day (день), hr (час), min (минута), sec (секунда) требуемые значения и подать 1 на вход sett.







Рисунок 1.44 – Получение системного времени getTDN

#### 2.3 Управление светодиодом Питание (210-Power)

Светодиод ПЛК210 Питание <sup>()</sup> горит по умолчанию зеленым при поданном питании на Порт 1 и/или Порт 2 контроллера.

Получение информации о наличии питающего напряжения на портах контроллера, а также автоматическое и ручное управление светодиодом **Питание** <sup>(1)</sup> из программы пользователя осуществляется с помощью блока <u>210-Power</u>.

Для этого необходимо добавить блок на любую страницу в месте работы **Фон**.

При наличии питания на портах контроллера устанавливается **1** на выходах **pwr1** (Порт 1) и/или **pwr2** (Порт 2).

При установке на входе блока **mode = 1** осуществляется автоматическое управление светодиодом **Питание** ():

- При наличии питания на обоих портах светодиод горит зеленым;
- При пропадании питания на основном Порту 1 светодиод начинает гореть красным;
- При восстановлении питания на основном Порту 1 светодиод начинает гореть зеленым.



Рисунок 1.45 – Работа блока 210-Power

При установке на входе блока **mode = 0** осуществляется ручное управление светодиодом **Питание** <sup>()</sup>:

- При подаче на вход **alrm = 1** светодиод начинает гореть красным;
- При подаче на вход **alrm = 0** светодиод начинает гореть зеленым.

## 2.4 Управление светодиодом Работа (210-LED)

Светодиод ПЛК210 **Работа** Ф при загруженном контроллере находится в состоянии мигания при отсутствии управления светодиодом из программы пользователя. Управление светодиодом из программы осуществляется с помощью блока <u>210-LED</u>.

Для управления светодиодом необходимо добавить блок на любую страницу в месте работы **Фон**.

На входе **led** (индикатор) необходимо указать значение **WORK**, что соответствует светодиоду **Работа**  $^{\textcircled{O}}$ .

Блок **210-LED** также позволяет осуществить управление светодиодами Батарея (значения BAT\_GREEN и BAT\_RED) и индикатором состояния MicroSD-карты (значение UNDER\_CAP). При отсутствии блоков для работы с данными светодиодами в проекте их состояние определяется системой (см. описание индикации в <u>Руководстве по эксплуатации</u>).

Для включения светодиода из программы необходимо указать на входе mode режим manual.

При подаче **1** на вход **enb** блока светодиод **Работа** будет загораться, при подаче **0** – погасать. При такой настройке к данному входу можно привязать сигналы работы исполнительных механизмов и др. функций, которым необходима индикация с лицевой стороны прибора.



#### Рисунок 1.46 – Работа блока 210-LED. Управление светодиодом Работа

При установке на входе **mode** режима **nr\_proc** светодиод будет мигать автоматически в зависимости от нагрузки контроллера. Значение на входе **enb** в данном режиме игнорируется.



#### внимание

При отключении пользовательской программы светодиод **Работа** Ф остается в состоянии, в котором он пребывал в момент отключения программы.

## 2.5 Работа с внешними накопителями (210-SD-USB)

Для работы с внешними накопителями контроллера из пользовательской программы предназначен блок <u>210-SD-USB</u>.

Внешние накопители (USB-flash и MicroSD) монтируются автоматически при их подключении к контроллеру.

С помощью блока **210-SD-USB** можно получить информацию о монтировании накопителя.

Для этого необходимо добавить блок на любую страницу в месте работы **Фон**.

Значения выходов блока обновляются при подаче **1** на вход **rfrsh**. На выходах **sdmntd** или **usbmntd** отобразится **1**, если соответствующий накопитель успешно монтирован. На выходах **sdpath** или **usbpath** отобразится абсолютный путь к директории монтирования накопителя.

| _b72 |    |          |    |     | 10      |            |  |
|------|----|----------|----|-----|---------|------------|--|
|      |    | 210-SD-U | SB |     | 1мкс    |            |  |
| 0    | 0- | mntSD    | b  | b   | sdmntd  | -1         |  |
| 0    | 0- | umntSD   | b  | str | sdpath  | /mmcblk1p1 |  |
| 0    | 0- | mntUSB   | b  | b   | usbmntd | -1         |  |
| 0    | 0- | umntUSB  | b  | str | usbpath | -/sda1     |  |
| 0    | 1- | rfrsh    | b  |     |         |            |  |

#### Рисунок 1.47 – Получение информации о монтировании внешних накопителей

Для безопасного извлечения накопителя необходимо подать **1** на входы **umntSD** или **umntUSB**.

| b72 |    |            |   |     | 10      |                  |
|-----|----|------------|---|-----|---------|------------------|
|     |    | 210-SD-USB |   |     | 1мкс    |                  |
| 0   | 0- | mntSD      | b | b   | sdmntd  | $\vdash^{\circ}$ |
| 0   | 1- | umntSD     | b | str | sdpath  | -1               |
| 0   | 0- | mntUSB     | b | b   | usbmntd | ┝                |
| 0   | 1- | umntUSB    | b | str | usbpath | -7               |
| 0   | 0- | rfrsh      | b |     |         |                  |

Рисунок 1.48 – Размонтирование внешних накопителей

Для повторного монтирования необходимо подать **1** на входы **mntSD** или **mntUSB**.



Рисунок 1.49 – Монтирование внешних накопителей из программы

На входы блока можно завести сигналы с внешних кнопок. Выходы **sdmntd** и **usbmntd** можно завести на входы сброса ошибок записи на диск блоков сохранения данных. О сохранении данных на диск см. подробнее в документе <u>Архивирование и хранение уставок</u>.

Информацию о свободной памяти накопителя можно получить с помощью блока *DriveInfo* из библиотеки *paCore*.

На вход **driveName** необходимо подать абсолютный путь монтирования накопителя. Для обновления информации на выходах блока необходимо подать **1** на вход **start**.

На выходах блока отобразится информация об общем, занятом и свободном объеме накопителя в Кбайт.

| D                                  |  |  |  |  |  |  |  |
|------------------------------------|--|--|--|--|--|--|--|
| Информация о microSD-накопителе 20 |  |  |  |  |  |  |  |
|                                    |  |  |  |  |  |  |  |
|                                    |  |  |  |  |  |  |  |
| р                                  |  |  |  |  |  |  |  |
|                                    |  |  |  |  |  |  |  |
| дно                                |  |  |  |  |  |  |  |
| р<br>р                             |  |  |  |  |  |  |  |





Россия, 111024, Москва, 2-я ул. Энтузиастов, д. 5, корп. 5 тел.: +7 (495) 641-11-56, факс: (495) 728-41-45 тех. поддержка 24/7: 8-800-775-63-83, support@owen.ru отдел продаж: sales@owen.ru Веб-сайт ООО "ПромАвтоматика-Софт": www.pa.ru per.:1-RU-dev-2.1