
We software Automation.We software Automation.

Features and improvements V3.4 SP3Features and improvements V3.4 SP3

Public
18.03.2011

We software Automation.

Contents

1. Engineering: Batch Mode/Scripting
2. Engineering: PLCopen XML
3. Engineering: User interface and editors
4. Compiler: Online change
5. Runtime: Transfer of system config as XML file
6. Runtime: Run from flash for embedded systems
7. Runtime: CoDeSys message box
8. Runtime: Operation control
9. Visualization: ActiveX control element
10. Visualization: Visu element „histogram“ available
11. Fieldbus technology: Device update during opening of a project
12. Fieldbus technology: Ethernet over EtherCAT (EoE)
13. Motion: New motion drivers
14. Motion: CAM editor

We software Automation.

Batch mode / Scripting

 CoDeSys V3 now includes a scripting language based on
Python.

 This means you have the same functionality as in
CoDeSys V2.3 plus the advantages of a real programming
language combined with the vast possibilities of the Python
standard library.

 Applications:
 Automatic import of project parts
 Automatic compilation and download of PLC

applications

We software Automation.

Python as scripting language

Advantages
 Easy syntax

• Existing CoDeSys V2.3 batches can easily be converted
 Support of complex program structures

• structured, object-oriented and functional programming is
possible

• comprehensive scripts and script libraries can be realized
 Widespread use
 Link for more information: http://www.python.org/

http://www.python.org/

We software Automation.

Comparison between V2 and V3

 CoDeSys V2.3 batch mode – very common - but
• No standard
• No variables
• No control structures (except of subroutines)
• No synchronous online functions

 CoDeSys V3
• Python as scripting language
• Powerful programming structures (variables, loops)
• Comprehensive API functions

- Access to CoDeSys objects
- Optional – synchronous online functions
- Python standard library (file access etc.)

We software Automation.

y

DevicePLC environment:
Trace
Activate user interface

User requests

Wait

Login, logout,
start, stop

Download,
Boot application

Read, write and force
variables

Status query:
PLC status
Communication abort

LibMan

Properties

Delete, rename and
move

Print, export and import

Search objects and list

Open, save, close

System Project Online

List of libs

Add or
delete
libraries

Add, insert
or plug
device

Device
properties:
Communi-
cation
Simulation

Scripting – libraries

We software Automation.

 Via task menu

 Via command line

CoDeSys --profile="CoDeSys V3.4 SP3" --runscript="path_to_sample_script.py“
[--enablescripttracing] [--noUI]

Scripting – execute

We software Automation.

Scripting – example
File generation of a fieldbus configuration based on a description file

print "Current project."
proj = projects.primary
for dev in proj.get_children():
 if dev.is_device:
 f = open("C:/Users/d.hess/Desktop/Konfiguration.txt", "r")
 for line in f:
 tok = line.split(' ')
 print tok[1], tok[0]
 if "(EtherCatMaster)" in tok[1]:
 dev.add(tok[0], DeviceID(64, "0000 0001", "3.4.2.0"))
 subnodes = dev.get_children()
 master = subnodes[len(subnodes) - 1]
 elif "(EK1100)" in tok[1]:
 master.add(tok[0], DeviceID(65, "2_044C2C5200110000",
"Revision=16#00110000"))
 subnodes = master.get_children()
 coupler = subnodes[len(subnodes) - 1]
 elif "(EL2008)" in tok[1]:
 coupler.add(tok[0], DeviceID(65, "2_07D8305200100000",
"Revision=16#00100000"))
 elif "(EL1004)" in tok[1]:
 coupler.add(tok[0], DeviceID(65, "2_03EC305227080000",
"Revision=16#27080000"))
print "script finished."

We software Automation.

PLCopen XML

Definition of PLCopen XML
 Exchange of function blocks, libraries and projects between different

tools, e.g.
• Debugging Tools
• Simulators
• Documentation tools
• Modelling tools

 Transport without losing information
• Logical information
• Graphical information
• Manufacturer specific information

 Source of the XML codes unimportant
• XML description is complete
• Filtering of the required information via the importing tool

We software Automation.

PLCopen XML

A “native“ import/export in CoDeSys already exists, but
• it is hardly human readable
• it includes constraints, which have to be observed
• it is only “documented“ by the export
• it can be different from version to version

… on the other hand it is always…
• complete

… but then again not suitable
for all applications.

 <Single Name="TypeGuid" Type="System.Guid">6f9dac99-8de1-4efc-8465-
68ac443b7d08</Single>
 <Array Name="EmbeddedTypeGuids" Type="System.Guid">
 <Single Type="System.Guid">a9ed5b7e-75c5-4651-af16-
d2c27e98cb94</Single>
 <Single Type="System.Guid">3b83b776-fb25-43b8-99f2-
3c507c9143fc</Single>
 </Array>
 <Single Name="Timestamp" Type="long">633439547036984297</Single>
 </Single>
 <Single Name="Object" Type="{6f9dac99-8de1-4efc-8465-68ac443b7d08}"
Method="IArchivable">
 <Single Name="SpecialFunc" Type="{0db3d7bb-cde0-4416-9a7b-
ce49a0124323}">None</Single>
 <Single Name="Implementation" Type="{3b83b776-fb25-43b8-99f2-
3c507c9143fc}" Method="IArchivable">
 <Single Name="TextDocument" Type="{f3878285-8e4f-490b-bb1b-
9acbb7eb04db}" Method="IArchivable">
 <Array Name="TextLines" Type="{a5de0b0b-1cb5-4913-ac21-
9d70293ec00d}">
 <Single Type="{a5de0b0b-1cb5-4913-ac21-9d70293ec00d}"
Method="IArchivable">
 <Single Name="Id" Type="long">22</Single>

We software Automation.

PLCopen XML

Therefore we now have a new PLCopen XML import/export
which is …

• standardized
• human readable
• defined for text and graphical languages
• with CoDeSys specific enhancements (e.g. devices,

interfaces, methods)
• also available in other IEC 61131-3 tools

… and even though it is…
• not really complete

… it is suitable for almost all applications.

We software Automation.

PLCopen XML

 Exchange format between IEC programming tools
• Data exchange between different development platforms
• Parallel usage of different programming environments

 Interface for “suppliers“ of graphical or logical information
• From higher-level engineering tools, generating IEC code / data
• Possibility to keep the connection to some elements

 Interface for “consumers“ of graphical or logical information
• Examples: Validation tools, compilers, SCADA/HMI tools,

documentation tools, translation tools
• Filters the required information from the complete XML file

 Distribution format for function block libraries

Applications

We software Automation.

PLCopen XML

 <pou name="PLC_PRG" pouType="program">
 <interface>
 <localVars>
 <variable name="counter">
 <type>
 <INT />
 </type>
 </variable>
 </localVars>
 </interface>
 <body>
 <ST>
 <xhtml xmlns="http://www.w3.org/1999/xhtml">counter := counter + 1;
</xhtml>
 </ST>
 </body>
 </pou>

Example of a PLCopen XML export

IEC program: Simple counter PLCopen XML file

http://www.w3.org/1999/xhtml

We software Automation.

PLCopen XML in CoDeSys

 Realized object types:
• POUs (incl. object-oriented enhancements)
• Interfaces (CoDeSys-specific enhancement)
• Actions
• Methods (CoDeSys-specific enhancement)
• Properties (CoDeSys-specific enhancement)
• Transitions (CoDeSys-specific enhancement)
• Global variables
• Data types
• Tasks (incl. Unions)
• Devices (not complete, CoDeSys-specific enhancement)
• Applications (not complete, CoDeSys-specific enhancement)
• Project information (CoDeSys-specific enhancement, only export)

 Realized programming languages:
• ST
• FBD
• CFC

We software Automation.

PLCopen XML - comparison

“Native” XML PLCopenXML
Human readable? no yes

Usable for external
tools?

yes, only with
automation platform

yes

Loss free? yes no

Complete? yes Enhancements in the
project format are not
directly available in
PLCopen XML

PLCopenXML is not suitable for an exact storage of a CoDeSys project.

We software Automation.

Project comparison: Graphical diff editor for library manager

Engineering: User interface and editors

We software Automation.

Project comparison: Graphical diff editor for SFC

Engineering: User interface and editors

We software Automation.

Project compatibility: Improved usability
 Edit operations which would require a project storage format upgrade can be

undone with the function “Cancel”.

Engineering: User interface and editors

We software Automation.

Project compatibility: Improved usability
 Projects created with a new CoDeSys version can no longer be

opened without having to confirm a warning message. In previous
versions, the user was often unaware of a possible data loss under
certain circumstances.

Engineering: User interface and editors

We software Automation.

Engineering: User interface and editors

Package Manager:
 Library profiles are now supported
 Setting of options is now supported

Minor usability improvements:
 Project archives can now be extracted even if a second instance of CoDeSys

is running. Library update messages are now displayed in the Message view
instead of in a dialog box.

 The editor caption now shows POU.Name instead of Name for actions,
methods, properties of transitions.

We software Automation.

Online change

New functionality
 Online change with optimized jitter

• Reduction of jitter through optimized change procedure
• Display of changes

Alternative storage allocation algorithm with a complete
download during online change:

• No additional loading of the boot project
• No memory fragmentation
• CRC (cyclic redundancy check) of the program code is

possible

We software Automation.

Online change

Requirements:
 In order to use this new feature a runtime update is

required and the device description settings
"runtime_features//optimized_online_change" have to be
configured.

We software Automation.

Online change

Process simplified:

Idea:
1 Easy call up
2 Call up in blanking interval; repeat if interrupted
3 Stop task scheduling in blanking interval and then execute

→ Minimum jitter

We software Automation.

Online change

Restrictions:
 Initialization, cannot be done while the task is running, if an

• initialization is not constant
• FB_EXIT is necessary
• FB_INIT contains cross references to moved code
• FB_INIT is called in the IEC-Cycle
• FB_INIT contains virtual method calls

We software Automation.

Online change

Real process

We software Automation.

Online change

Conclusion:
All online change procedures are divided into executable,
interruptible and non-interruptible steps.
The different function block instances will be differentiated,
and external references will be verified. An external reference
is an access to global variables and external calls.
Then the runtime system can call up the different parts.

We software Automation.

Online change

Examples for online change events without jitter:
 Change size of existing arrays (even really big ones)
 Add new data of any volume
 Call new functions (a complete new call tree will have no

effect on the running IEC-tasks)
 Changes in old style function blocks without FB_Init or

FB_Exit-methods.

We software Automation.

 Transfer of the “symbol configuration“ as XML file onto
the controller (now contains area/offset/bit and name of
direct addresses)

 Symbol configuration is required for external symbol
access to IEC variables

 Advantage:
• no code generation on PLC
• no use of internal memory

Transfer of symbol config as XML file

We software Automation.

Run from Flash for embedded systems

 Run from Flash for embedded systems

Standard PLC

Code

Data

Embedded System

Code

Data

Code

RAM FlashRAM

We software Automation.

Run from Flash for embedded systems

 Advantages:
 Especially for embedded systems, in respect of the

reduced memory requirements for the RAM

 Disadvantages:
 No debugging possible
 No online change possible

We software Automation.

CoDeSys message box

 Generation of message boxes through logger entries or
IEC applications during online operation

We software Automation.

Operation control to increase security

 Access to the PLC can be controlled via application in case of a critical
condition to ensure a safe plant operation.

 Application is able to prevent following operations, depending on the status
 Online Change
 Force
 Breakpoints
 Reset
 Stop
 Download

 Operations can be deactivated directly from
IEC or C

 Delete of application and reset origin is always possible
 A message will be displayed in CoDeSys

We software Automation.

Visualization

 Visualization element “NativeControl”:
For connection to ActiveX controls for Windows platforms
or platform specific objects, like camera objects directly
within a visualization.

 Platform-dependent controls in a visualization can be used
via NativeControl (ActiveX element within the toolbox).
Examples are web browser, calendar, media player, flash
player, ...

 IEC variables can be passed to the element and the
element can send back a result via a common interface.

We software Automation.

Visualization
 ActiveX element in the toolbox

We software Automation.

Visualization

 Visualization element “Histogram” now available – display
of a numerical array as bargraph, curve or line.

We software Automation.

Visualization

 When using the VisualElementToolkit to develop a
visualization the texts of the different elements can now be
supplied in different languages.

 The element properties as well as the toolbar are now
available in German and English language.

 Other languages will follow.

We software Automation.

Fieldbus technology

 When opening a project an update of all devices will be
offered.

 Ethernet over EtherCAT (EoE)

We software Automation.

Fieldbus technology

 Device update when opening a project

We software Automation.

Fieldbus technology

 Device update when opening a project
• Functionality is identical to functionality for libraries,

visualizations and compilers.
• Which one of the older versions is to be exchanged must be

defined in the device description.
• Only the supplier of the respective device can estimate the

compatibility and can give a recommendation.

We software Automation.

Fieldbus technology

 Entry in the .xml file:

We software Automation.

Fieldbus technology

 Definition: Ethernet over EtherCAT (EoE)
 Any kind of Ethernet device can be connected within the

EtherCAT segment via a switch port. The Ethernet frames
are tunneled through the EtherCAT protocol, like it is
known from internet protocols (e.g. TCP/IP, VPN, PPPoE
(DSL))

 The EtherCAT network is completely transparent for the
Ethernet devices and the EtherCAT realtime properties will
not be affected.

We software Automation.

Fieldbus technology

 Extension for EtherCAT: EoE (Ethernet over EtherCAT)
 Special switch port terminal (EL6601) or devices with EoE

protocol (e.g. Indradrive CS) will be supported
 It is possible to connect standard network devices to the

switch port terminal, like printer, PC …
 It is also possible to connect a Modbus TCP slave and to

use our Modbus TCP stack without needing an additional
network card.

We software Automation.

Fieldbus technology

 EL6601 – Switch port terminal for Ethernet from Beckhoff

We software Automation.

Fieldbus technology

 Indradrive Cs uses EoE for configuration
purposes and to download firmware.

 Indraworks can therefore be connected
to the servo controller via EtherCAT and
no serial data communication is
necessary.

We software Automation.

The following drives are supported from Version V3.4 SP3:
 KEB H6 Dual (ETC)
 Infranor Xtrapuls PAC (ETC)
 Infranor Xtrapuls PAC (CAN)
 Infranor cd1-k (CAN)

SoftMotion

We software Automation.

SoftMotion

CAM editor

 This feature displays the exact
initialization code of a CAM table.

 It helps the customer to understand
the way CAM tables are defined in
CoDeSys.

 CoDeSys V2.3 offers this feature
too.

	PowerPoint-Präsentation
	Contents
	Folie 3
	Python as scripting language
	Comparison between V2 and V3
	Scripting – libraries
	Scripting – execute
	Scripting – example
	PLCopen XML
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	PLCopen XML in CoDeSys
	PLCopen XML - comparison
	Engineering: User interface and editors
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Online change
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Transfer of symbol config as XML file
	Run from Flash for embedded systems
	Folie 30
	CoDeSys message box
	Operation control to increase security
	Visualization
	Folie 34
	Folie 35
	Folie 36
	Fieldbus technology
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	SoftMotion
	Folie 46

